Understanding Deep lL.earning
(Stll) Requires Rethinking

A ' Generalization
/// “/ \ _~
\% Authors: C. Zhang, S. Bengio, M. Hardt,
Q) B. Recht, and O.Vinyals
//)
// d

By Subas Rana and Afsaneh Shams

Agenda

Research Question

Introduction

Effective capacity of neural networks
The role of regularization
Experimental findings

Finite-sample expressivity
Conclusion

Related work

01

|

({)

“ 1 10‘1111; %9’%
’9? %&9‘9’9

¢ k’ A 0".’%

Research question

"What practices do and do
not promote generalization,
and what does and does not
measure generalization?"

(Generalization error

Difference between training error and test
error

Epochs

Introduction

Deep neural networks can exhibit a small gap
between training and test performance

Conventional wisdom attributes this to
properties of the model or regularization
techniques

It tries to mitigate some of the existing

IﬂtI‘O dUCthD misconceptions

Through a host of randomization tests and
touches upon how generalization error may or
may not be related to regularization

It also throws light on some interesting points like
finite-sample expressivity of neural nets

Randomization

@

e

“Deep neural networks easily fit random labels”

"

Randomization

~

Implication:

\

0 training error
Test error is no better than random

guessing
CIFARI0 and ImageNet

The effective capacity of neural networks is
sufficient for memorizing the entire data set.
Training time increases only by a small
constant factor compared with training on

the true labels.

Randomizing labels is solely a data

transformation, leaving all other properties
of the learning problem unchanged.

The role of regularization

* Regularization?
* Train overparameterized neural networks
* Implicit and Explicit Regularization

Regularization may improve generalization

performance but is neither necessary nor by itself
sufficient for controlling generalization error.

Finite-sample Expressivity

A very simple two-layer ReLU network with p = 2n + d parameters

can express any labeling of any sample of size n in d dimensions.

Effective Capacity
of Neural Networks

Effective Capacity Of Neural Networks

* The size of a model family is often huge as it counts all possible functions in a certain set. P

By effective capacity, we informally refer to the size of the subset of models that is effectively achievable
by the learning procedure.

* “Well-behaved” functions produced by some specific optimization algorithms, with bounded computation
budget, and sometimes with explicit or implicit regularizations.

Effective Model Capacity _ Feed-Forward
Neural Network

* Choose a methodology inspired by nonparametric randomization tests.
* There is no longer any relationship between the instances and the class labels.

 Surprisingly, several properties of the training process for multiple standard architectures are
largely unaffected by this transformation of the labels.

2\

Experimental‘FindingA\,\ \

\

ataset

CIFARIO:

50,000 Train
10,000 Test
|0 Classes

32,32,3

ImageNet:

Egyptian cat

1,281,167 Train
50,000 Validation
100,000 Test
1000 classes
299, 299, 3

ILSVRC

pr
‘ »
s

Persian cat Siamese cat tabby ‘

Experimental Setup

Input Machine Output
Shuffled pixels Inception (V3) True labels
Random pixels Alexnet Partially corrupted labels

Gaussian MLPs Random labels

Q

Randomization Test

The original dataset without
modification.

Human
Monkey

Bird /
Cat

Deer

Dog

Frog

Building

Ship

Truck

Q

Randomization 'lest (cont.)

Human
True labels Monkey
Bird /
Independently with probability
p, the label of each image is Cat
corrupted as a uniform
random class. Deer
Dog
Frog
. r“—;v ‘1".» \ , ’ \‘Amk : > Bu“ding
e O B e N iy e,
Ship

Truck

Randomization 'lest (cont.)

Human

* True labels Monkey |

Bird /

(@1

* Partially corrupted labels

All the labels are replaced with

random ones. Deer

Dog
Frog

Building

Ship

Truck

20

A

Randomization

* True labels
* Partially corrupted labels

e Random labels

A random permutation of the
pixels is chosen and then the
same permutation is applied to
all the images in both training
and test set.

Test

(cont.)

P(x)

Human
Monkey

Bird /
Cat

Deer

Dog

Frog

Building

Ship

Truck

21

Q

Randomization 'lest (cont.)

| ‘l) Human
(P
* True labels W s P, (x) Monkey
* Partially corrupted labels Bird /
* Random labels L Cat \
. : Py(x) — [
Shuffled pixels 2(\ Deer
A Dog
A different random RS '
permutation is applied to each Ps (x) Frog
image independently. : BED
o Building
| / Ship
> Py(x) (™

Truck

22

Randomization 'lest (cont.)

Human
* True labels » Monkey
* Partially corrupted labels . /
Bird
* Random labels Cat
 Shuffled pixels Deer
* Random pixels Dog
Frog
A Gaussian distribution is used
to generate random pixels for Building
each image.
Ship

Truck

23

Results of Randomization Tests

Fitting random labels and random pixels on CIFARIO.

(@) The training loss of various experiment settings decaying with the training steps.

(b) The relative convergence time with different label corruption ratio.

(c) The test error (also the generalization error since training error is 0) under different label corruptions.

true labels =—a [nception
random labels 9 o= AlexNet
shuffled pixels = MLP 1x512
rondom pixels
gaussian

7))
7))
=
|
@
o)
©
@
>
©

time to overfit

m=—8 [nception
o—@ AlexNet
te M[P 1x512

10 15 20 0. . 0.6 : . 0. 0.2 0.4 0.6 0.8 10
thousand steps label corruption label corruption

(a) Learning curves (b) Convergence slowdown (c) Generalization error growth

Findings

For fitting random labels:
* No need to change the learning rate schedule.
* Once the fitting starts, it converges quickly.

* It converges to (over)fit the training set perfectly. Also note that “random pixels” and “Gaussian” start converging faster than
“random labels.”

Partially corrupted labels:

* The behavior of neural network training with a varying level of label corruptions from 0 (no corruption) to | (complete
random labels) on the CIFARIOQ dataset.

* The networks fit the corrupted training set perfectly for all the cases.

25

Randomization on
CIFARIO

* The training and test accuracy (in %) of various models on
the CIFAR|0 dataset.

* No hyperparameter tuning when switching from the true
labels to the random labels.

* With some modification of the hyperparameters, perfect
accuracy could be achieved on random labels.

Model

Inception

(fitting
random
labels)

Inception
w/o
BatchNorm

(fitting ran-
dom labels)

Alexnet

(fitting ran-
dom labels)

MLP 3 x 512

(fitting
random
labels)

MLP 1 x 512

(fitting
random
labels)

params
1,649,402

1,649,402

1,387,786

1735178

1,209,866

Random Weight
crop decay

Yes Yes
Yes No
No
No
No

Train
accuracy

100.0
100.0
100.0
100.0
100.0

Test
accuracy

89.05
89.31
86.03
85.75
9.78

Randomization on ImageNet

* The performance of the Inception v3 model on ImageNet with true labels and random labels, respectively.
* No hyperparameter tuning when switching from the true labels to the random labels.

* With some modification of the hyperparameters, perfect accuracy could be achieved on random labels.

data
auge

1gh . L
dropout e top-1 train top-5 train top-1 test top-5 test

ImageNet 1000 classes with the original labels
yes yes yes 92.18 99.21 77.84 93.92
yes no no 92.33 99.17 72.95 90.43
no no yes 90.60 100.0 67.18 (72.57) 86.44 (91.31)
no no no 9953 100.0 59.80 (63.16) 80.38 (84.49)
Alexnet (Krizhevsky et al., 2012) - - - 83.6

ImageNet 1000 classes with random labels

no yes 'es 91.18 0.49
no no ‘es 87.81 0.50
no no 0.56

e

e
Complexity and Stab#ity. &

Rademacher Complexity

Imagine where we replace true labels with Rademacher random variables:

. _ |+1 with probability 0.5
%= 1=1 with probability 0.5

This gives us the Rademacher correlation which shows what is the best that a random classifier could do.

n

_ 1
R.(F) = E,[supser ~) o (20)]

i=1

Where F is the function class on a dataset {z,,...,z,}.

It can be shown that;

In()
Etest < Etrain + Rn(F) +

29

VC-Dimension

* A classification model f with some parameter
vector O is said to shatter a set of data points (x|,
Xy, ..., X,) if, for all assignments of labels to those
points, there exists a O such that the model f
makes no errors when evaluating that set of data
points.

e The VC dimension of a model f is the maximum
number of data points that can be arranged so that
f shatters them.

VC-Dimension - Statistical L.earning
Theory

* Probabilistic upper bound on test error:

P(Etest < Etry, + \/% lD(log (%) +1) — log(g)])=1-7

 Validity only when D < N.

Unitorm Stability

* Stability is the property of the algorithm used for training.

* Uniform stability of an algorithm A measures how sensitive the algorithm is to the replacement of a single
example.

* If an algorithm does not rely too heavily on any data point, then it generalizes well.

* The weakest stability measure is directly equivalent to bounding generalization error and does take the
data into account.

32

Unitorm Stability

Input:A training set S ={z,,...,z,}
Generalization gap:
€gen = |Etest — Erain |
Good learning algorithm minimize both generalization gap and test error.
Algorithm A, A(S) = output on training set S.
A is e-stable if:

ElLCA(S);z) — lI(A(s\z;);2)| < ¢

|Etest _Etrainl < €

33

Conclusions and Implications

* Conclusion:

* Deep neural networks easily fit random labels.

* Implications:
* The effective capacity of neural networks is sufficient for memorizing the entire data set.

* Even optimization on random labels remains easy.

34

T'he role of
Regularization

Data Augmentation

Weight Decay
Dropout

Regularization -

Early stopping
Implicit
Regularization

Batch Normalization
SGD

\

36

1.2 Regularization — “Weight Decay”

Standard weight update:

LW) = Le(W) + SW?

New weight update:

aL(W)

Wi <« We — 1 oW,

- N AW,

’

Forces the weights to become small,“decay”.

* optimizer = torch.optim.Adam(params, Ir=3e-4, weight decay=1e-3)

37

Dropout

* Randomly drop neurons from layers in the
network.

e Removes reliance on individual neurons.

¢ Maybe doesn’t learn redundancies.

N
N
* Maybe learns a more nuanced set of feature ‘ “'{‘)\§
detectors. ""‘\'

* Dropout can be used after any non-output layer

* self.dropout = nn.Dropout(0.25)

* Only the InceptionV3 for ImageNet uses
dropout in the experiments.

Data Augmentation

* Domain-specific transformations of the input data.

* For image data, commonly used transformations include random cropping, and random perturbation of
brightness, saturation, hue, and contrast.

* Increases the input space (i.e. all possible images we care about).

Flipping Colour Jittering

e é:.’"\ g Edge Enhancement

Co e, s e B v

Original
Cropping Fancy PCA

39

Experimental
findings

Random Weight Train Test
Model #params crop decay accuracy accuracy

[nception 1,649,402 Yes 100.0 89.05

100.0 89.31
100.0 86.03

100.0 85.75

(fitting 100.0 9.78

1,649,402 No

Explicit Regularization Results

(fitting ran- No No 100.0 10.12
dom labels)

Alexnet 1,387,786 Yes Yes 99.90 81.22
Yes No 99.82 79.66
No Yes 100.0 77.36
No No 100.0 76.07

(fitting ran- No No 99.82 9.86
dom labels)

LP3x512 1,735178 No Yes 100.0 53.35
No No 100.0 52.39

(fitting No No 100.0 10.48
random
labels)

LP1x512 1,209,866 No 99.80 50.39
No 100.0 50.51

(fitting 99.34 10.61
random

Fxplicit Regularization Results

data weight

aug dropout decay top-1 train top-S train top-1 test top-S test

ImageNet 1000 classes with the original labels
yes yes yes 92.18 99.21 77.84 95.92

no no 92.33 99.17 90.43
N0 no 90.60 100.0 67.18 (72.57)| 86.44 (91.31)

no no no 99.53 100.0 59.80 (63.16)| |80.38 (84.49)
Alexnet (Krizhevsky et al., 2012) - - - 83.6

ImageNet 1000 classes with random labels
no yes yes 91.18 0.09 0.49
no no yes 87.81 0.12 0.50
no no no 95.20 m 0.56

Explicit Regularization Results

‘-“? L am

@
o ®
) 5.0-0-0-0-000-0-0-0-0-0-0-0

e=0 test(w/ aug, wd, dropout)
train(w/ aug, wd, dropout)
&=¢ test(w/o aug, dropout)
¢ train(w/o aug, dropout)
test(w/o aug, wd, dropout)
train(w/o aug, wd, dropout)

>
O
O
e
-
O
O
O

0.2

0.0
0 2000 4000 6000 8000 10000
thousand training steps

(a) Inception on ImageNet

* Explicit regularization may improve generalization but is neither necessary nor sufficient itself

43

Implicit Regularization Results

o
©

test(w/ aug, wd, dropout)
@ train(w/ aug, wd, dropout)

accuracy
o
(0]

test(w/o aug, dropout) test(Inception)

> train(w/o aug, dropout) ® train(Inception)
, test(w/o aug, wd, dropout) test(Inception w/o BN)
train(w/o aug, wd, dropout) train(Inception w/o BN)

o
\I

0.0 .
b} 2000 4000 6000 8000 10000 10 15
thousand training steps thousand training steps

(a) Inception on ImageNet (b) Inception on CIFAR1O

* Early stopping could potentially improve generalization
* Batch normalization doesn’t help much with generalization performance

Appeal to Linear Models

Appealing to linear models, they analyze how SGD acts as an implicit regularizer.

For linear models, SGD always converges to a solution with a small [2-norm.

Hence, the algorithm itself is implicitly regularizing the solution.

Minimum norm is not predictive of generalization performance.

45

Finite Sample
L xpressivity

Finite Sample Expressivity ol Neural
Networks

* When we talk about population level it means that with infinite number of inputs how the network
performs.

* At the “population level”, depth k networks typically more powerful than depth k-1 networks.

* Given a finite sample size n, even a two-layer neural network can represent any function once the
number of parameters p exceeds n.

e Theorem I:

“There exists a two-layer neural network with ReLU activations and 2n+d weights that can
represent any function on a sample of size n in d dimensions."

47

Finite Sample Expressivity of Neural
Networks

* A network C can represent any function of a sample size n in d dimensions if:
* For every samples S € R% with |S| = n and

* Every function f:S - R
* There exists a setting of weights of C such that

C(x) = f(x) for every x € S.

48

Conclusion

B

Effective capacity of neural networks.

Successful neural networks are large enough to shatter the training data.

Optimization continues to be easy even when generalization is poor.

SDG may be performing implicit regularization by converging to solutions with minimum [,-norm.

Traditional measures of model complexity struggle to explain the generalization of large neural
networks.

They do not present any better measures, but they just show that the traditional measures can not

be used to explain generalization. »

W

Related Work

Conventional generalization bounds based on uniform stability is inadequate for overparameterized
deep neural networks, extensive efforts were made toward tighter generalization bounds.

Based on overparameterized deep networks generalize even without any explicit regularization, and
the analysis of implicit regularization in linear models, there is renewed interest in seeking to
explain generalization in deep learning by characterizing the implicit regularization induced by the
learning algorithms.

In-depth analysis on memorization of overparameterized models also extends intuition on
overfitting from the traditional U-shaped risk curve to the “double descent” risk curve.

The randomization test proposed in this paper serves as the backbone in the experimental design
in many of studies. Dedicated workshops on phenomena in deep learning are being organized in all
major machine learning conferences nowadays. Even some theory conferences start to consider
pure empirical studies that reveal “interesting and not well understood behavior” in the call-for-
papers.

50

Reterences

Reterences:

* Zhang, Chiyuan, et al. "Understanding deep learning (still) requires rethinking generalization." Communications of the ACM 64.3 (2021): 107-115.

* Zhang, C., Bengio, S., Hardt, M., Recht, B.,Vinyals, O. Understanding deep learning requires rethinking .

* https://www.youtube.com/watch?v=042vde4tbGO0.

. https://www.you\tube.com/watch?v=mEYerI MYb5Q.

* Cybenko, George. "Approximation by superpositions of a sigmoidal function.”" Mathematics of control, signals and systems 2.4 (1989): 303-314.

* Krogh,Anders, and John A. Hertz. "A simple weight decay can improve generalization.” In advances in neural information processing systems, pp. 950-957. 1992.
 Srivastava, Nitish, et al. "Dropout: a simple way to prevent neural networks from overfitting." The journal of machine learning research 15.1 (2014): 1929-1958.
* Luke Taylor, Geoff Nitschke.“Improving Deep Learning using Generic Data Augmentation.” arXiv preprint.arXiv: 1708.06020 (2017).

* https://www.youtube.com/watch?v=47dPjn2Rfr8.

* https://www.youtube.com/watch?v=puDzy2XmR5c.

* https://www.youtube.com/watch?v=yXOMHOpbon8

52

Thank You

