Data in Od: a point

$$Id: a Gine, x \in \mathbb{R}$$

 $2d: a plane, (x, y) \in \mathbb{R}^2$
 $3d: a Gube, (x, y, z) \in \mathbb{R}^3$
 $4d: 2, (x, y, z, w, h) \in \mathbb{R}^k$
 $Nd: 2, (x, y, z, w, h) \in \mathbb{R}^n$
 $1 map keypoints cloud
 $2 map keypoints$$

Pata as Vectors:
$$\overline{x} \in \mathbb{R}^{d}$$
[x1, x2, x3, ..., xd]

Pisturnes in high dimension:
If we generate a points at random in d-dimensions where each coordinate is a zero-mean unit-variance
Gaussian, then for sufficiently (are d, with high prob the distances between all pairs
[Gaussian, then for sufficiently (are d, with high prob the distances between all pairs
[Gaussian, the for a function of large humbers]
of points will be the same.
I I I - Z | ² =
$$\sum_{i=1}^{d} (y_i - Z_i)^2$$

distance
This is equivalent to:
the sum of d independent samples of a new
vandom variable x that is the squared difference

of two Greeners:

$$\Rightarrow We are summing independent samples
$$x_{i} = (y_{i} - z_{i})^{2}$$
from a random variable with bound variance.
Law of laye numbers \Rightarrow average of somples $\rightarrow E(x)$
Therefore, all gains distance will approach the expectation of ξ t,
which is the some value.

$$X \text{ If we have two prints } \overline{y} \text{ and } \overline{z} \text{ from a obdimensional Gaussian w/}$$
unit variance in each dimension, thus $|\overline{y}|^{2}$ and $|\overline{z}|^{2}$ are orthogonal.
What does this means?
If we scale thus to be unix length,
 $|\overline{y}|^{2}$ and \overline{z} are orthogonal $|\overline{z}|^{2}$ and $|\overline{z}|^{2}$ are orthogonal $|\overline{z}|^{2}$ and $|\overline{z}|^{2}$ and $|\overline{z}|^{2}$ are orthogonal $|\overline{z}|^{2}$.$$

their shap is in the equator

× Volume: So us $f^{3}k^{3}$. If there is a set of points in R? they make an object A, we shrink it by E so that a new object $(I - E)A = f(I - E) \times [X \in A]^2$, then $Vol((1-\varepsilon)A) = (1-\varepsilon)^{d}Vol(A)$ Since $1 - \varepsilon \leq e^{-\varepsilon}$, then $\frac{\operatorname{Vol}\left((1-\varepsilon_{2})A\right)}{\operatorname{Vol}(A)} = (1-\varepsilon_{2})^{d} \leq e^{-\varepsilon_{2}}$ As I -> 00, E-Ed -> 0, This means nearly all high dim up 1 1 , " vol of A does not belog to (IE)A. most volume of A is near its surface.