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https://www.youtube.com/watch?v=0OauaSkYD44&list=PLD2r7XEOtm-AGjr3ynbljbx3oWHdus9Xb

Tangent space
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Geodesic
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ISOmap

Strategy

In practical settings where we are only given a data set X sampled from
an unknown manifold M, we can approximate the true geodesic distances
dam(i,7) by the shortest-path distances dg(i,7) on a nearest-neighbor
graph G built on the data set.

1. Build graph
A —— B B o 2. Find shortest paths
= ) w1 3. Use MDS
Dr. Guangliang Chen | Mathematics & Statistics, San José State University 16/27 5
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Laplacian Eigenmap
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t-SNE

Nice iIltI'OdllCtiOl’l: https://www.oreilly.com/content/an-illustrated-introduction-to-the-t-sne-algorithm /

Good discussion: o
https://distill.pub/2016/misread-tsne/
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https://www.oreilly.com/content/an-illustrated-introduction-to-the-t-sne-algorithm/
https://distill.pub/2016/misread-tsne/

Generative Visual Manipulation on the Natural Image Manifold
Jun-Yan Zhu et al., ECCV 2016

both shape and color (shoes dataset) Image 2
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only shape, no color (outdoor natural dataset)
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Sparse coding illustration

Natural Learned bases (¢;  §ga):
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X ~ 0.8 * ¢
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Sparse Coding

Sparse coding is a class of unsupervised methods for learning sets of over-complete bases to represent
data efficiently. The aim of sparse coding is to find a set of basis vectors ¢; such that we can represent
an input vector x as a linear combination of these basis vectors:

k

X = z a;;

i=1

While techniques such as Principal Component Analysis (PCA) allow us to learn a complete set of basis
vectors efficiently, we wish to learn an over-complete set of basis vectors to represent input vectors
x € R" (i.e. such that k > n). The advantage of having an over-complete basis is that our basis vectors
are better able to capture structures and patterns inherent in the input data. However, with an over-
complete basis, the coefficients a; are no longer uniquely determined by the input vector x. Therefore,
in sparse coding, we introduce the additional criterion of sparsity to resolve the degeneracy introduced
by over-completeness.

Here, we define sparsity as having few non-zero components or having few components not close to
zero. The requirement that our coefficients a; be sparse means that given a input vector, we would like
as few of our coefficients to be far from zero as possible. The choice of sparsity as a desired
characteristic of our representation of the input data can be motivated by the observation that most
sensory data such as natural images may be described as the superposition of a small number of atomic
elements such as surfaces or edges. Other justifications such as comparisons to the properties of the
primary visual cortex have also been advanced.

We define the sparse coding cost function on a set of m input vectors as

m k

2 k
T W _ () 7 ()
minimize o , Z X Za, o +4 ZS(a, )
i=1

j=1 i=1

where S(.) is a sparsity cost function which penalizes a; for being far from zero. We can interpret the
first term of the sparse coding objective as a reconstruction term which tries to force the algorithm to
provide a good representation of x and the second term as a sparsity penalty which forces our
representation of x to be sparse. The constant A is a scaling constant to determine the relative
importance of these two contributions.

Although the most direct measure of sparsity is the "Ly” norm (S(a;) = 1(|a;| > 0)), it is non-
differentiable and difficult to optimize in general. In practice, common choices for the sparsity cost S(. )
are the L) penalty S(a;) = |a;|, and the log penalty S(a;) = log(1 + alz)A
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http://ufldl.stanford.edu/tutorial/unsupervised/SparseCoding/
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