
Attention is all you need

Pradeep Kumar Ragu Chanthar
Srinivasa Sai Deepak Varukol

Background

● Feed forward neural network
● Recurrent neural network
● Encoding and decoding modeling
● Attention mechanism
● softmax

Feed Forward Neural Network (FFNN)

● First and simple neural network

● The information moves in only one direction which is forward from the input nodes, through the hidden nodes (if any) and
to the output nodes so there are no cycles or loops in the network

● Using FFNN we can train a model that receives a Spanish word and give you the equivalent in English. For every
Spanish word the model receives, it outputs an English one. But can we train a model to do translation of spanish
sentence to english or vice versa?

FFNN example

Recurrent Neural Network (RNN)

● Like any other neural network model recurrent neural networks utilize training data to learn but they are
distinguished by their “memory” as they take information from prior inputs to influence the current input
and output

● While traditional deep neural networks assume that inputs and outputs are independent of each other,
The output of recurrent neural networks depend on the prior elements within the sequence. While future
events would also be helpful in determining the output of a given sequence

RNN example

Encoder and decoder model

Activation function

● Activation functions are functions used in a neural
network to compute the weighted sum of inputs and
biases, which is in turn used to decide whether a neuron
can be activated or not

● It is used to determine the output of neural network like
yes or no. It maps the resulting values in between 0 to 1
or -1 to 1 etc. (depending upon the function).

Motivation

● RNN was used to analyzing the language whether it for translation or text summarization or text
generation

● RNN takes each word from the input one at a time and process the output sequentially

● One of the major drawback of RNN was not handling not large sequence of words. Another one is
slow to train because it couldn’t parallelize the process

Transformer

● Transformer is a neural network architecture that
aims to solve tasks sequence-to-sequence while
easily handling long-distance dependencies

● The input sequence can be passed parallelly so that
GPU can be used effectively and the speed of
training can also be increased.

Difference between RNN and Transformer

RNN Transformer

RNN encoder

vector

RNN decoder

Transformer is better

Transformer encoder

Transformer decoder

…

Transformer is best

Difference between RNN and Transformer

RNN Transformer

RNN encoder

vector

RNN decoder

Transformer is better

Transformer encoder

Transformer decoder

…

Transformer is best

Difference between RNN and Transformer

RNN Transformer

RNN encoder

vector

RNN decoder

Transformer is better Transformer is best

Transformer encoder

Transformer decoder

…

Difference between RNN and Transformer

RNN Transformer

RNN encoder

vector

RNN decoder

Transformer is better Transformer is best

Transformer encoder

Transformer decoder

…

Difference between RNN and Transformer

RNN Transformer

RNN encoder

vector

RNN decoder

Transformer is better Transformer is best

Transformer encoder

Transformer decoder

…

Attention

The Architecture of
Transformer

The Architecture of Transformer

The Architecture of
Transformer

Input Embedding

The Architecture of
Transformer

Positioning encoding

Positioning encoding

The Architecture of
Transformer

Attention mechanism

Mapping Queries and key-value pairs to output

Output - Weighted sum of the values

Attention functions

● Additive attention
● Dot product attention

Self attention mechanism

● We calculate the scores by multiplying query and key
vectors

● We divide it with √dk (dimensions of key vectors)
● Then these results sent to softmax function, which

indicates how much each word will be expressed at this
position

● Multiply value vector with corresponding softmax score
● Sum of weighted value vectors

Multi head attention

The Architecture of
Transformer

The Residuals

● Each sub-layer (self-attention, ffnn) in each
encoder has a residual connection around it,
and is followed by a layer-normalization step

● This goes for the sub-layers of the decoder
as well

https://arxiv.org/abs/1607.06450

Decoder

● The encoder start by processing the input
sequence. The output of the top encoder is
then transformed into a set of attention
vectors K and V.

● These are to be used by each decoder in its
“encoder-decoder attention” layer which
helps the decoder focus on appropriate
places in the input sequence

Decoder

● The following steps repeat the process until a
special symbol is reached indicating the
transformer decoder has completed its
output.

● The output of each step is fed to the bottom
decoder in the next time step, and the
decoders bubble up their decoding results
just like the encoders did.

● And just like we did with the encoder inputs,
we embed and add positional encoding to
those decoder inputs to indicate the position
of each word.

Decoder

Testing Mode

Training Mode

Decoder

The decoder stack outputs a vector of floats.

● The Linear layer is a simple fully connected neural
network that projects the vector produced by the stack
of decoders, into a much, much larger vector called a
logits vector.

● The softmax layer then turns those scores into
probabilities (all positive, all add up to 1.0). The cell
with the highest probability is chosen, and the word
associated with it is produced as the output for this
time step.

Results

Model N

(Number of
encoder/decoder

blocks)

Dimensions of
Model

Train steps Parameters (x10^6)

Base 6 512 100K 65

Big 6 1024 300K 213

Model Differences

Results
English Constituency Parsing Results

Results

Translation Task

Conclusion

● Understanding the Attention Mechanism in recurrent Encoder decoder network

● Introducing transformer: a sequence transduction model just needs attention to work

● New state of the art Language translator

Pros & Cons

Pros:

● State of the art technology
● Overcame the RNN shortcomings

Cons:

● Attention can only deal with fixed-length text strings. The text has to be split into a certain
number of segments or chunks before being fed into the system as input

● This chunking of text causes context fragmentation. For example, if a sentence is split from the
middle, then a significant amount of context is lost. In other words, the text is split without
respecting the sentence or any other semantic boundary

Discussion Questions

● Why transformers have a fixed length context?

● Since long range dependency is not an issue, why segment have be short?

