Irr
L -

f } Ve
Primary

Transformer Core

(U

(€ “—) i-

il 5

Secondary
Load

Nerimary Nseconpary
turns turns

Attention is all you need

Output Output
Probabilties Probabilties
CSofimax) %puk
Post-
—— [processing

Pradeep Kumar Ragu Chanthar

Srini SaiD k Varukol
Nx Nx
‘Multi-Head
s
!
Positional Positional Positior sitional
Encoding Encoding Encodi Output -oding

Input Pre-

Input Output i Pre-
Embedding Embedding processing processing

Inputs Outputs
(shifted right)

Inputs Outputs
(shifted right)

Background

Feed forward neural network
Recurrent neural network
Encoding and decoding modeling
Attention mechanism

softmax

Feed Forward Neural Network (FFNN)

e First and simple neural network

e The information moves in only one direction which is forward from the input nodes, through the hidden nodes (if any) and
to the output nodes so there are no cycles or loops in the network

e Using FFNN we can train a model that receives a Spanish word and give you the equivalent in English. For every
Spanish word the model receives, it outputs an English one. But can we train a model to do translation of spanish
sentence to english or vice versa?

FFNN example

Input Layer Hidden Layer Qutput Layer

Feed forward neural network structure to translate incoming spanish words

Recurrent Neural Network (RNN)

e Like any other neural network model recurrent neural networks utilize training data to learn but they are
distinguished by their “memory” as they take information from prior inputs to influence the current input

and output

e While traditional deep neural networks assume that inputs and outputs are independent of each other,
The output of recurrent neural networks depend on the prior elements within the sequence. While future
events would also be helpful in determining the output of a given sequence

RNN example

< Daniel > <is > < waiting > < for > <the > < bank > < queue >

wr @ @ @ 00
- Q@@ o 00
e @ @ @ 00

< Daniel > < estd > < esperando > <la> <cola > < del> < banco >

A4

t t+1 t+2 t+3 t+4 t+5 t+6

Recurrent neural network structure to translate incoming spanish words

Encoder and decoder model

Encoder
gl .g |
< Estoy > <de> < camino >

Hidden State
n
43

s
L]
5

Decoder
<l>» <am > <on> <my> < way >

Activation function

e Activation functions are functions used in a neural
network to compute the weighted sum of inputs and

biases, which is in turn used to decide whether a neuron
can be activated or not

e |tis used to determine the output of neural network like
yes or no. It maps the resulting values in between O to 1
or -1 to 1 etc. (depending upon the function).

Motivation

e RNN was used to analyzing the language whether it for translation or text summarization or text
generation

e RNN takes each word from the input one at a time and process the output sequentially

® One of the major drawback of RNN was not handling not large sequence of words. Another one is
slow to train because it couldn’t parallelize the process

Tran szrmer "Autobots, Transform And Roll Out!"

e Transformer is a neural network architecture that
aims to solve tasks sequence-to-sequence while
easily handling long-distance dependencies

e The input sequence can be passed parallelly so that
GPU can be used effectively and the speed of
training can also be increased.

Difference between RNN and Transformer

RNN Transformer
Transformer is better Transformer is best
RNN encoder Transformer encoder
vector

RNN decoder Transformer decoder

Difference between RNN and Transformer

RNN Transformer
Transformer is better Transformer is best
RNN encoder Transformer encoder
vector

RNN decoder Transformer decoder

Difference between RNN and Transformer

RNN Transformer
Transformer is better Transformer is best
RNN encoder Transformer encoder
vector

RNN decoder Transformer decoder

Difference between RNN and Transformer

RNN Transformer
Transfory' better Transformer is best
RNN encoder Transformer encoder
vector

RNN decoder Transformer decoder

Difference between RNN and Transformer

RNN Transformer
Transformer is better Transformer is best
RNN encoder Transformer encoder
vector

RNN decoder Transformer decoder

Attention

Neural Machine Translation
SEQUENCE TO SEQUENCE MODEL WITH ATTENTION

Encoding Stage Decoding Stage
Encoder Attention
RNN Decoder
RNN
—_—
—
—

Je suis étudiant

The Architecture of
Transformer

Positional
Encoding

Feed
Forward

Multi-Head
Attention

Inputs

g

Feed
Forward

Multi-Head
Attention

Masked
Multi-Head
Attention

Outputs
(shifted right)

Encoding

The Architecture of Transformer

| am a student

4
n*n
|
NPL [tud

OUT»"L"" I am a student

4

- I \)

[ENCODER J [DECODER J
yy L)

[ENCODER] [DECODER]
3 4

[ENCODER J (DECODER)
) 4

[ENCODER] [DECODER J
) 4

[ENCODER J [DECODER J
yy L)

[ENCODER] { DECODER]

- A ~

INPUT

Je

suis étudiant

The Architecture of
Transformer

Positional
Encoding

Feed
Forward

Multi-Head
Attention
4

a»
—

Embedding

Feed

g

\——— 4

Forward

Multi-Head
Attention

Masked
Multi-Head
Attention

Output
Embedding

“ Positional

Encoding

Outputs
(shifted right)

Input Embedding

Word Embeddings
How to represent words? Key Idea: Similar words should have similar representation vectors.

L

&3

The Architecture of
Transformer

Positional
Encoding

Feed
Forward

Multi-Head
Attention

Input
Embedding

Inputs

Feed

g

Forward

Multi-Head
Attention

Masked
Multi-Head
Attention

Output
Embedding

“ Positional

Encoding

Outputs
(shifted right)

Positioning encoding

How to add positional information?
Key Idea: add a new vector containing positional info to current vectors.

0.20 CHECKLIST
* Unique encoding for

0.85 + each time-step
* Consistent distance

between any two time-
0.69
’ steps
* should generalize to
1 1 longer sentences
- * deterministic
Input Positional

Embeddings Encoding

Positioning encoding

How to create the Positional Encoding (Transformer style)

A d-Dimensional vector
(d = encoding dimension)

Positional
Encoding

How to create the Positional Encoding (Transformer style)

i=0
Even dimensions
i=1 (i=0,24,..)
i = 2 '3 ” o . 21 / dmodel
PE(05,2i) = sin(pos /10000)
i-3 _ PE 04 2i41) = c0s(pos 100003/ dms)
i=4 0dd dimensions
(i=1,3,5,..)
i=5
Positional

Encoding

The Architecture of

Transformer

Feed
Forward

Multi-Head
Attention

Feed
Forward

g

Masked
Multi-Head
Attention

Positional

“ Positional

Encoding
Input Output
Embedding Embedding

Inputs Outputs
(shifted right)

Encoding

Attention mechanism

Mapping Queries and key-value pairs to output
Output - Weighted sum of the values
Attention functions

e Additive attention
e Dot product attention

N\

The animal didn't cross the street because it was too tired.

U/

Self attention mechanism

® We calculate the scores by multiplying query and key
vectors

e We divide it with Vdk (dimensions of key vectors)

e Then these results sent to softmax function, which
indicates how much each word will be expressed at this
position

e Multiply value vector with corresponding softmax score

® Sum of weighted value vectors

Attention(Q, K, V) = softmax(

Input

Embedding

Queries

Keys

Values

Score

Divide by 8 (dj)

Softmax

Softmax
X
Value

Sum

Thinking

Machines

x [T

Multi head attention

MultiHead(Q, K, V) = Concat(heady, ..., heady,) W'°
where head; = Attention(QW<, KWX, viv))

1) This is our 2) We embed
input sentence* each word*

X

EEEE

*In all encoders other than #0,

we don't need embedding.

We start directly with the output
of the encoder right below this one

3) Split into 8 heads.
We multiply X or

Wo@
1 WK Qo
HT W[)V . Ko
Vo
W;Q
I W1K 01
W,V 0 L K4
Vi
w-Q
LN Q;

w7V K7
&

4) Calculate attention
using the resulting
with weight matrices ~ Q/K/V matrices

5) Concatenate the resulting ~ matrices,
then multiply with weight matrix W to
produce the output of the layer

min

man mnmn

The Architecture of

Transformer

Feed
Forward

Multi-Head
Attention

Feed
Forward
[rez=])

g

Masked
Multi-Head

l "Attention Attention
Positional “ Positional
Encoding Encoding

Input Output
Embedding Embedding

Inputs Outputs
(shifted right)

K,C Add & Normalize) \
4 4

The Residuals

S o i reccccccncccccnaas 4
21 2. [
e Each sub-layer (self-attention, ffnn) in each 4 4
encoder has a residual connection around it, T (11
»> LayerNorm(111t CEEd)

and is followed by a /ayer-normalization step

ENCODER #1

F
&
F
_

e This goes for the sub-layers of the decoder
as well

p
o
0
.
0
-

POSITIONAL
ENCODING

x+ (IS xo[TTT]

Thinking Machines

https://arxiv.org/abs/1607.06450

Decoding time step:@Z 3456 OUTPUT

Decoder
(- ? 2\
e The encoder start by processing the input i Tmmax)
sequence. The output of the top encoder is ——) — }
then transformed into a set of attention T -
vectors Kand V. (ENCODER DECODER J
® These are to be used by each decoder in its = ~
“encoder-decoder attention” layer which “Wranwe 00 [OT0 OO0
helps the decoder focus on appropriate S
places in the input sequence EMBEDDINGS [DIN [DDE [EEDN

INPUT Je suis étudiant

Decoder

Decoding time step: 1@3 4 56 OUTPUT

e The following steps repeat the process until a 4
special symbol is reached indicating the , A
transformer decoder has completed its — o wm o Voo (et)
output. @ @

e The output of each step is fed to the bottom
decoder in the next time step, and the ENCODERS PECODERS
decoders bubble up their decoding results
jUSt like the encoders did. EMBEDDING t t t t

e And just like we did with the encoder inputs, wihIwE S e S
we embed and add positional encoding to
those decoder inputs to indicate the position ~ fveeeoines FEEE FEEE S FEEH —
of each word. INPUT Je suis étudiant PREVIOUS

OUTPUTS

Decoder

Testing Mode

Training Mode

Decoder

The decoder stack outputs a vector of floats.

The Linear layer is a simple fully connected neural
network that projects the vector produced by the stack
of decoders, into a much, much larger vector called a
logits vector.

The softmax layer then turns those scores into
probabilities (all positive, all add up to 1.0). The cell
with the highest probability is chosen, and the word
associated with it is produced as the output for this
time step.

Which word in our vocabulary
is associated with this index?

Get the index of the cell

with the highest value
(argmax)

log_probs

logits

Decoder stack output

.. vocab_size

)

.. vocab_size

am
5

012345 ’
(Softmax

3}
CEET T e e e e e e e e
012345 ’
(Linear

4

LI

Results

Model Differences

N Dimensions of Train steps Parameters (x1076)
Model

(Number of
encoder/decoder
blocks)

Base 6 512 100K 65

Big 6 1024 300K 213

Results

English Constituency Parsing Results

Parser Training WSJ 23 F1
Vinyals & Kaiser el al. (2014) [37] | WSJ only, discriminative 88.3
Petrov et al. (2006) [29] WSJ only, discriminative 90.4
Zhu et al. (2013) [40] WSJ only, discriminative 90.4
Dyer et al. (2016) [8] WSJ only, discriminative 91.7
Transformer (4 layers) WSJ only, discriminative 91.3
Zhu et al. (2013) [40] semi-supervised 01.3
Huang & Harper (2009) [14] semi-supervised 91.3
McClosky et al. (2006) [26] semi-supervised 02.1
Vinyals & Kaiser el al. (2014) [37] semi-supervised 92.1
Transformer (4 layers) semi-supervised 92.7
Luong et al. (2015) [23] multi-task 93.0
Dyer et al. (2016) [8] generative 03.3

Results

Translation Task

BLEU Training Cost (FLOPs)
Model EN-DE EN-FR EN-DE EN-FR
ByteNet [18] 23.75
Deep-Att + PosUnk [39] 39.2 1.0 - 10%°
GNMT + RL [38] 24.6 39.92 2.3-101° 1.4.10%
ConvS2S [9] 25.16 40.46 9.6-10® 1.5-10%
MoE [32] 26.03 40.56 2.0-10 1.2-10%
Deep-Att + PosUnk Ensemble [39] 40.4 8.0-10%°
GNMT + RL Ensemble [38] 26.30 41.16 1.8-10% 13- 18"
ConvS2S Ensemble [9] 26.36 41.29 7.7-101° 1.2-10%
Transformer (base model) 273 38.1 3.3.1018

Transformer (big) 284 41.8 2.3-10"

Conclusion

e Understanding the Attention Mechanism in recurrent Encoder decoder network

® Introducing transformer: a sequence transduction model just needs attention to work

e New state of the art Language translator

Pros & Cons

Pros:

e State of the art technology
e Overcame the RNN shortcomings

Cons:

e Attention can only deal with fixed-length text strings. The text has to be split into a certain
number of segments or chunks before being fed into the system as input

e This chunking of text causes context fragmentation. For example, if a sentence is split from the
middle, then a significant amount of context is lost. In other words, the text is split without
respecting the sentence or any other semantic boundary

Discussion Questions

e Why transformers have a fixed length context?

® Since long range dependency is not an issue, why segment have be short?

