Hello!

We are Spencer King & Sixiang Zhang

Transforming Computer Vision

DeepAI - Text to Image

Supporting Papers

AN IMAGE IS WORTH 16x16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE

Alexey Dosovitskiy^{*,†}, Lucas Beyer^{*}, Alexander Kolesnikov^{*}, Dirk Weissenborn^{*}, Xiaohua Zhai^{*}, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby^{*,†} ^{*}equal technical contribution, [†]equal advising Google Research, Brain Team {adosovitskiy, neilhoulsby}@google.com

Swin Transformer: Hierarchical Vision Transformer using Shifted Windows

Ze Liu^{†*} Yutong Lin^{†*} Yue Cao^{*} Han Hu^{*‡} Yixuan Wei[†] Zheng Zhang Stephen Lin Baining Guo Microsoft Research Asia

 $\{v-\text{zeliul}, v-\text{yutlin}, \text{yuecao}, \text{hanhu}, v-\text{yixwe}, \text{zhez}, \text{stevelin}, \text{bainguo}\} \texttt{@microsoft.com}$

Agenda

- 1. Background
- 2. Related Work
- 3. Motivation
- 4. Methods
- 5. Evaluation
- 6. Conclusion
- 7. Swin Transformer

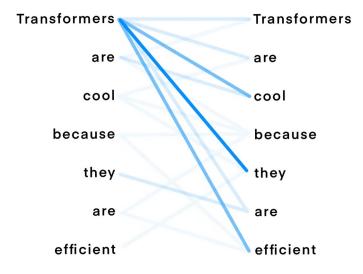
Background

The problem & why it is important

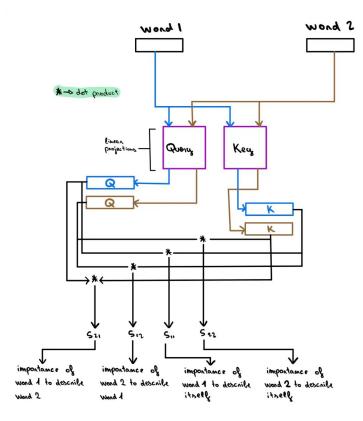
Transformers in NLP

- Transformers were mostly used for NLP problems (model of choice)
- Very computationally efficient and scalable
- Ability to handle long-term dependencies (better than RNNs)
- Allowed for the training of model of unprecedented size with over 100B parameters

Self-Attention

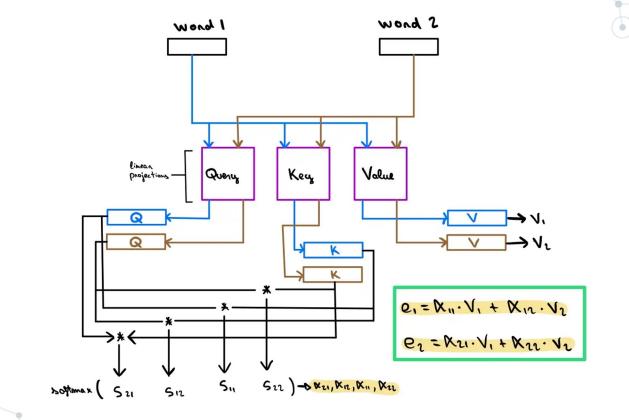


Attention Scores Between 2 Words



Final Word Embeddings

•



<u>https://drive.google.com/file/d/1gL0JoHm3KdN8yYMKhsz</u> <u>rtNuAqlMjKgJ1/view?usp=share_link</u>

Computer Vision Before Application of Transformers

- Computer vision tasks were dominated by various CNN architectures (AlexNet, VGG-16, ResNet, etc)
- Some newer works tried combining CNN with selfattention but could not scale effectively
- Issue is CNN architecture do not scale effectively on modern hardware accelerators

Application of Transformers to Computer Vision Tasks

- Trained on mid-sized data sets (ImageNet ~ 14M)
 Poor results
- Trained on larger datasets (14M 300M)
 - Excellents results
- Transformers lack inductive biases present in CNNs
- "Training trumps inductive bias!"

Overarching Problem

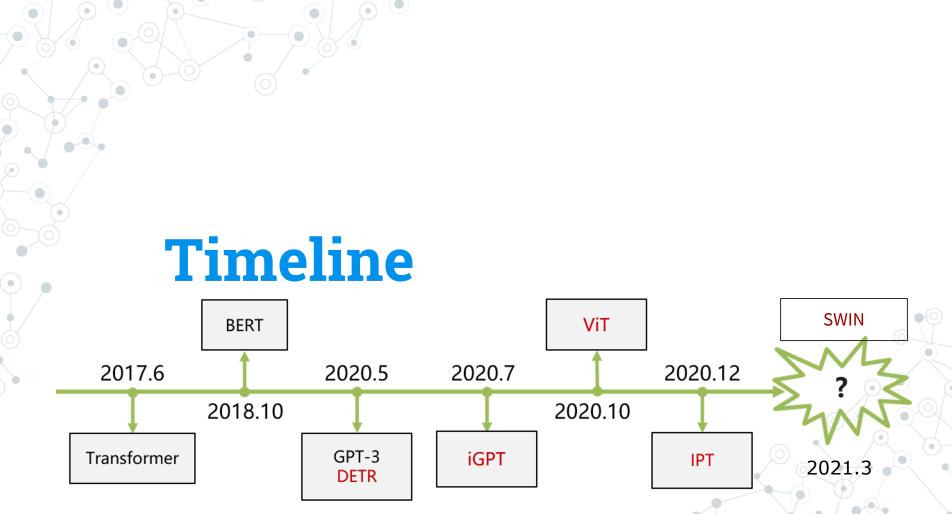
Is there a more scalable solution to compete with state-of-the-art CNNs on computer vision tasks?

Main Idea

Use the scalability of transformers to more efficiently solve computer vision problems

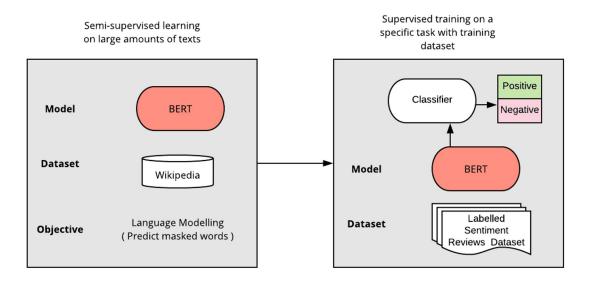
Related Work

A review of work related to our problem



Source: https://www.arxiv-vanity.com/papers/2012.12556/

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

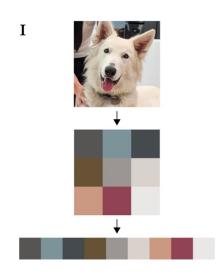


"AS close as possible to the Bert" - By ViT

18

Source:https://nish-19.github.io/posts/2021/02/blog-post-4/

iGPT (Generative Pretraining from Pixels)



 Reducing image resolution and color space
 a generative model based on Transformers

19

Source: https://proceedings.mlr.press/v119/chen20s.html

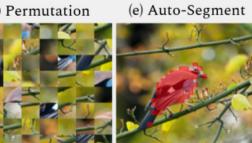
Motivation

Why was this work proposed?

We show that this reliance on CNNs is not necessary and a pure transformer applied directly to sequences of image patches can perform very well on image classification tasks...

...Vision Transformer (ViT) attains excellent results compared to state-of-the-art convolutional networks while requiring substantially fewer computational resources to train.

CNN and ViT



CNN 00-1-00 Accuracy 20 iNat CUB DTD GTSRB

(f) Off-the-shelf Feats.

https://arxiv.org/abs/2105.10497

Methods

Outlining the work's procedures

Question?

WHY DON'T WE USE A FULL IMAGE FOR TRANSFORMER?

25

Recall: Self-Attention

Complexity!

O(n²)

Method



Source: lucidrains/vit-pytorch

-0

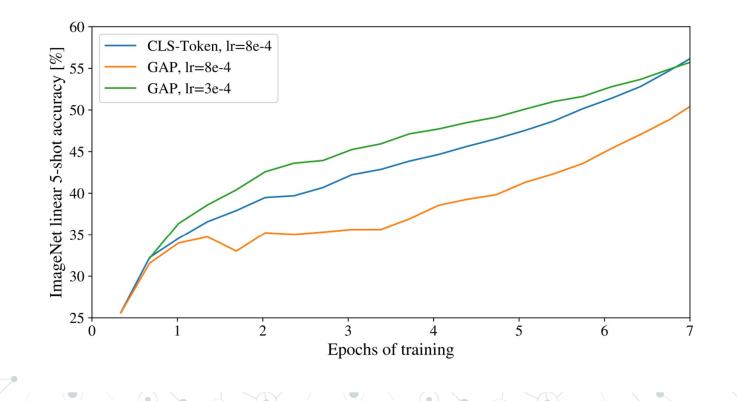
Details of ViT variants

Model	Layers	Hidden size D	MLP size	Heads	Params
ViT-Base	12	768	3072	12	86M
ViT-Large	24	1024	4096	16	307M
ViT-Huge	32	1280	5120	16	632M

ViT-L/16 means the "Large" variant with 16×16 input patch size.

27

[Class] Token VS GAP(globally average-pooling)



28

Why needs Position embeddings?

Positions embedding(cont.)

Pos. Emb.	Default/Stem	Every Layer	Every Layer-Shared
No Pos. Emb.	0.61382	N/A	N/A
1-D Pos. Emb.	0.64206	0.63964	0.64292
2-D Pos. Emb.	0.64001	0.64046	0.64022
Rel. Pos. Emb.	0.64032	N/A	N/A

30

5. Evaluation

What are the results?

Dataset

	<pre># of Images</pre>	# of Classes
ImageNet (Small)	1.3 Million	1 Thousand
ImageNet-21K (Medium)	14 Million	21 Thousand
JFT (Big)	300 Million	18 Thousand

Source:https://github.com/wangshusen/DeepLearning/blob/master/Slides/10_ViT.pdf

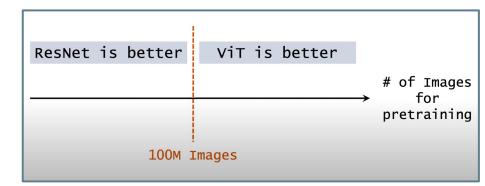
Conclusion

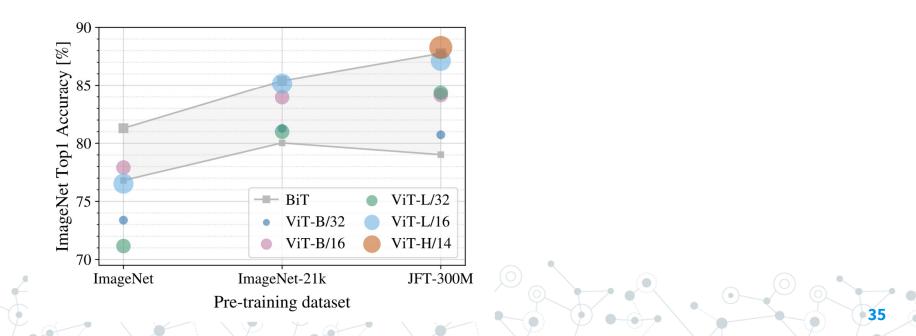
The key takeaways

Summary

- Simple
- Scalable
- Accuracy comparable to SOTA CNN models while computational less expensive to train
- Requires large amount of data for SOTA performance
- Output Unlike prior works, no image-specific inductive bias

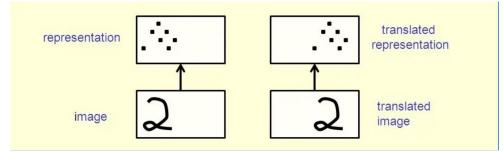
ResNet vs Transformer



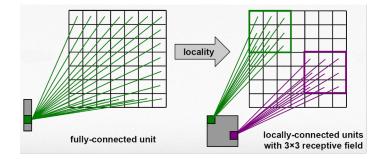


Why is ViT worse than ResNets at a small dataset?

CNN's inductive biases



Translation equivariance



locality

https://oi.readthedocs.io/en/latest/computer_vision/cnn/intro.html https://towardsdatascience.com/translational-invariance-vs-translational-equivariance-f9fbc8fca63a

Best Model Performance Comparison

	Ours-JFT (ViT-H/14)	Ours-JFT (ViT-L/16)	Ours-I21k (ViT-L/16)	BiT-L (ResNet152x4)	Noisy Student (EfficientNet-L2)
ImageNet	88.55 ± 0.04	87.76 ± 0.03	85.30 ± 0.02	87.54 ± 0.02	$88.4/88.5^*$
ImageNet ReaL	90.72 ± 0.05	90.54 ± 0.03	88.62 ± 0.05	90.54	90.55
CIFAR-10	99.50 ± 0.06	99.42 ± 0.03	99.15 ± 0.03	99.37 ± 0.06	—
CIFAR-100	94.55 ± 0.04	93.90 ± 0.05	93.25 ± 0.05	93.51 ± 0.08	_
Oxford-IIIT Pets	97.56 ± 0.03	97.32 ± 0.11	94.67 ± 0.15	96.62 ± 0.23	—
Oxford Flowers-102	99.68 ± 0.02	99.74 ± 0.00	99.61 ± 0.02	99.63 ± 0.03	_
VTAB (19 tasks)	77.63 ± 0.23	76.28 ± 0.46	72.72 ± 0.21	76.29 ± 1.70	_
TPUv3-core-days	2.5k	0.68k	0.23k	9.9k	12.3k

•37

Future Work

- Great results but challenges remain
- Apply ViT to other computer vision tasks not just image classification
 - Object detection
 - Image segmentation
- Improve pre-training to accommodate larger scale
- Further scaling of ViT itself

Structurally?

Swin Transformer

Interesting follow up work extending ViT

....Swin Transformer, that capably serves as a general-purpose backbone for computer vision.

Motivation

- Address shortcomings of ViT
 - Can preform dense prediction tasks object detection & image segmentation
 - Increases scalability complexity scales linearly rather than quadratically with image size
- Create general purpose computer vision backbone

There exist many vision tasks such as semantic segmentation that require dense prediction at the pixel level, and this would be intractable for [the] Transformer on high-resolution images, as the computational complexity of its self-attention is quadratic to image size.

Shifted Window

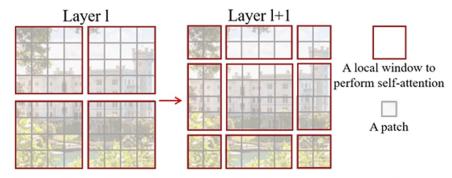
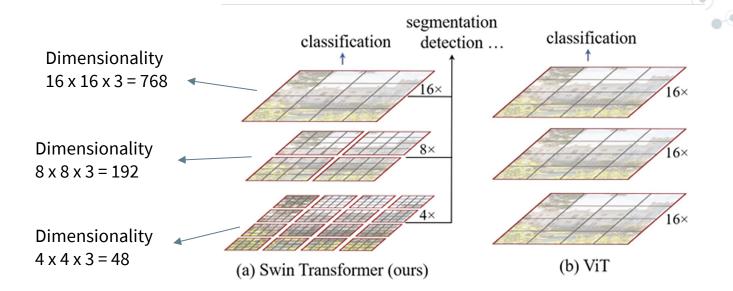


Figure 2. An illustration of the *shifted window* approach for computing self-attention in the proposed Swin Transformer architecture. In layer l (left), a regular window partitioning scheme is adopted, and self-attention is computed within each window. In the next layer l + 1 (right), the window partitioning is shifted, resulting in new windows. The self-attention computation in the new windows crosses the boundaries of the previous windows in layer l, providing connections among them.

Creating Patches



Architecture

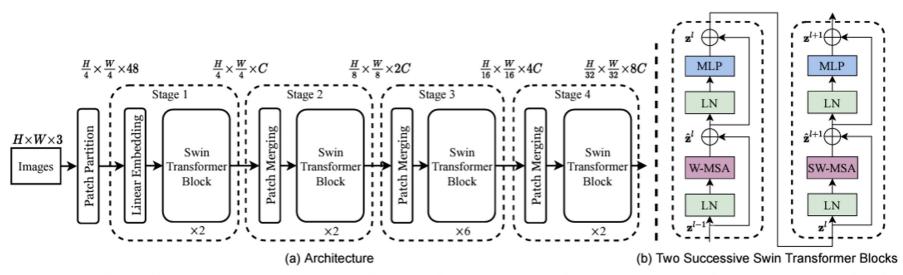


Figure 3. (a) The architecture of a Swin Transformer (Swin-T); (b) two successive Swin Transformer Blocks (notation presented with Eq. (3)). W-MSA and SW-MSA are multi-head self attention modules with regular and shifted windowing configurations, respectively.

45

Performance - Image Classification

(a) Regular ImageNet-1K trained models								
method	image	#param.	FI OD	throughput	ImageNet			
method	size	πparam.	1 LOI S	(image / s)	top-1 acc.			
RegNetY-4G [48]	224^{2}	21M	4.0G	1156.7	80.0			
RegNetY-8G [48]	224^{2}	39M	8.0G	591.6	81.7			
RegNetY-16G [48]	$ 224^2 $	84M	16.0G	334.7	82.9			
EffNet-B3 [58]	300^{2}	12M	1.8G	732.1	81.6			
EffNet-B4 [58]	380^{2}	19M	4.2G	349.4	82.9			
EffNet-B5 [58]	456 ²	30M	9.9G	169.1	83.6			
EffNet-B6 [58]	528 ²	43M	19.0G	96.9	84.0			
EffNet-B7 [58]	600^{2}	66M	37.0G	55.1	<mark>84.3</mark>			
ViT-B/16 [20]	384 ²	86M	55.4G	85.9	77.9			
ViT-L/16 [20]	384 ²	307M	190.7G	27.3	76.5			
DeiT-S [63]	224 ²	22M	4.6G	940.4	79.8			
DeiT-B [63]	224^{2}	86M	17.5G	292.3	81.8			
DeiT-B [63]	384 ²	86M	55.4G	85.9	83.1			
Swin-T	224 ²	29M	4.5G	755.2	81.3			
Swin-S	224^{2}	50M	8.7G	436.9	83.0			
Swin-B	224^{2}	88M	15.4G	278.1	83.5			
Swin-B	384 ²	88M	47.0G	84.7	<mark>84.5</mark>			

(b) ImageNet-22K pre-trained models								
method	image	#param.	FL OPs	throughput	ImageNet			
method	size	"Param.	I LOI 3	(image / s)	top-1 acc.			
R-101x3 [38]	384^{2}	388M	204.6G	-	84.4			
R-152x4 [38]	480^{2}	937M	840.5G	-	85.4			
ViT-B/16 [20]	384 ²	86M	55.4G	85.9	84.0			
ViT-L/16 [20]	384 ²	307M	190.7G	27.3	85.2			
Swin-B	224^{2}	88M	15.4G	278.1	85.2			
Swin-B	384^{2}	88M	47.0G	84.7	86.4			
Swin-L	384 ²	197M	103.9G	42.1	87.3			

•46

Performance - Object Detection

(a) Various frameworks									
Meth	od	Backb	one	AP ^{box}	AP ₅₀ ^{box}	AP ₇₅ ^{box}	#param	FLOPs	FPS
Casca	de	R-5	0	46.3	64.3	50.5	82M	739G	18.0
Mask R-	CNN	Swin	Swin-T		69.3	54.9	86M	745G	15.3
ATS	c	R-5	0	43.5	61.9	47.0	32M	205G	28.3
AIS	3	Swin	-T	47.2	66.5	51.3	36M	215G	22.3
DenDoin	teV2	R-5	0	46.5	64.6	50.3	42M	274G	13.6
Reprom	RepPointsV2		-T	50.0	68.5	54.2	45M	283G	12.0
Spars	se	R-5	0	44.5	63.4	48.2	106M	166G	21.0
R-CN	R-CNN		-T	47.9	67.3	52.3	110M	172G	18.4
(b)							ask R-C		
	AP ^{boy}	AP ₅₀	AP_{7}^{b}	AP^{m}	^{ask} AP ₅	nask AP	^{mask} para	mFLOP	sFPS
DeiT-S [†]	48.0	67.2	51.	7 41.	4 64	.2 44	I.3 80N	1 889G	10.4
R50	46.3	64.3	50.5	5 40.	1 61	.7 43	3.4 82N	1 739G	18.0
Swin-T	50.5	69.3	54.9	9 43.	7 66	.6 47	7.1 86N	1 745G	15.3
X101-32	48.1	66.5	52.4	4 41.	6 63	.9 45	5.2 101N	A 819G	12.8
Swin-S	51.8	70.4	56.	3 44.	7 67	.9 48	3.5 107N	A 838G	12.0
X101-64	48.3	66.4	52.	3 41.	7 64	.0 45	5.1 140N	A 972G	10.4
Swin-B	51.9	70.9	56.	5 45.	0 68	.4 48	3.7 145N	A 982G	11.6

47

Performance - Image Segmentation

ADE	val	test	#param.	FI OP	EDC	
Method	Backbone	mIoU	score	#param.	FLOPS	ггэ
DANet [23]	ResNet-101	45.2	-	69M	1119G	15.2
DLab.v3+ [11]	ResNet-101	44.1	-	63M	1021G	16.0
ACNet [24]	ResNet-101	45.9	38.5	-		
DNL [71]	ResNet-101	46.0	56.2	69M	1249G	14.8
OCRNet [73]	ResNet-101	45.3	56.0	56M	923G	19.3
UperNet [69]	ResNet-101	44.9	-	86M	1029G	20.1
OCRNet [73]	HRNet-w48	45.7	-	71M	664G	12.5
DLab.v3+ [11]	ResNeSt-101	46.9	55.1	66M	1051G	11.9
DLab.v3+ [11]	ResNeSt-200	48.4	-	88M	1381G	8.1
SETR [81]	T-Large [‡]	50.3	61.7	308M	-	-
UperNet	DeiT-S [†]	44.0	-	52M	1099G	16.2
UperNet	Swin-T	46.1	-	60M	945G	18.5
UperNet	Swin-S	49.3	-	81M	1038G	15.2
UperNet	$Swin-B^{\ddagger}$	51.6	-	121M	1841G	8.7
UperNet	Swin-L [‡]	53.5	62.8	234M	3230G	6.2

Thanks!

Any questions?

The related papers can be found at the links below:

- 1. https://arxiv.org/abs/2010.11929
- 2. https://arxiv.org/abs/2103.14030

Resources

- General Overview of Transformers in Various Applications <u>https://towardsdatascience.com/transformers-in-computer-vision-farewell-convolutions-f083da6ef8ab</u>
- Short Overview of ViT Paper <u>https://www.youtube.com/watch?v=HZ4j_U3FC94</u>
- Complete Coverage of ViT Paper <u>https://www.youtube.com/watch?v=TrdevFK_am4</u>
- Explanation of the Swin Transformer Paper <u>https://www.youtube.com/watch?v=SndHALawoag</u>
- Second explanation of the Swin Transformer Paper <u>https://www.youtube.com/watch?v=tFYxJZBAbE8</u>

Resources Cont.

About Metrics of AP and mAP for Object Detection / Instance Segmentation <u>https://yanfengliux.medium.com/the-confusing-metrics-of-ap-and-map-for-object-detection-3113ba0386ef</u>

