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Introduction

* Pre-trained language representations in NLP systems have been
researched for various tasks
* Single-layer representations learned word-vectors
* Multi-layer RNNs to form stronger representations

* Pre-trained recurrent and transformer language models are fine-tuned
directly

* Reading comprehension, question answering, textual entailment



Motivation

* Limitations of pre-trained recurrent/transformer language models

* Need task-specific datasets and task-specific fine-tuning
* Requires fine-tuning on extremely large datasets

* Large datasets have several limitations

* Limits applicability/generalizability of language models for various language
tasks

* Potential of narrow training distribution
* Not always necessary for many language tasks



Motivation (cont.)

* Increase in capacity of transformer language models shows
improvements in NLP task performance
* From 100 million parameter- to 17 billion parameter- models
* Each increase improved downstream NLP tasks

* In this paper, GPT-3 is introduced

e 175 billion parameter autoregressive language model

* Previous paper presentation addressed increasing the size of the datasets for
better model performance

* Now, this paper focuses on increasing the size of the language model for
better performance



Larger models and performance
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Figure 1.2: Larger models make increasingly efficdent use of in-context information. We show in-context learmning
performance on a simple task requiring the model to remove random symbols from a word, both with and without a
natural language task description (see Sec. 3.9.2). The steeper “in-context learning curves” for large models demonstrate
improved ability to leam a task from contextual information. We see qualitatively similar behavior across a wide range
of tasks.



Approach

The three settings we explore for in-context learning

Traditional fine-tuning {not used for GRFT-3)

Zero-shat

The model predicts the anewer given only a natural language
deseription of the task, Mo gradient updates are pestormed,
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Figure 2.1: Zero-shot, one-shot and few-shot, contrasted with traditional fine-tuning. The panels above show
four methods for performing a task with a language model
and few-shot, which we study in this work, require the model to perform the task with only forward passes at test
time. We typically present the model with a few dozen examples in the few shot setting. Exact phrasings for all task
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fine-tuning is the raditional method, whereas zero-, one-,

descriptions, examples and prompts can be found in Appendix G.



Approach (cont.)

Model Name Nparams  Mlayers  Omodel  Mheads Ohead Batch Size  Learning Rate
GPT-3 Small 125M 12 768 12 64 0.5M 6.0 x 1074
GPT-3 Medium 350M 24 1024 16 64 0.5M 3.0x 1074
GPT-3 Large 760M 24 1536 16 96 0.5M 2.5 x 1074
GPT-3 XL 1.3B 24 2048 24 128 IM 2.0 x 10~
GPT-3 2.7B 2.7B 32 2560 32 80 IM 1.6 x 10~
GPT-3 6.7B 6.7B 32 4096 32 128 2M 1.2 x 107
GPT-3 13B 13.0B 40 5140 40 128 2M 1.0 x 10~
GPT-3 175B or “GPT-3" 175.0B 06 12288 96 128 3.2M 0.6 x 10~

Table 2.1: Sizes, architectures, and learning hyper-parameters (batch size in tokens and learning rate) of the models
which we trained. All models were trained for a total of 300 billion tokens.



Model and
Architectures




(Generative Pre-trained
models

OpenAl GPT1, GPT2, GPT3, LaMDA

L W
AYOUKNOW'TTSOMETHING OF A HUMAN ARTIST MYSELF



Language Models

p(x) = Hp(.ﬂn‘.ﬂl, ooy Sn—1)

1=1




Language Models

p(output|input)

p(output|input, task).

Architectural level
Algorithmiclevel

Task conditioning




Language Modeling

e Multitask language model — MQAN

* Translation training: (translate to french, english text,
french text)

* Reading comprehension: (answer the question, document,
question, answer)

e Supervised Vs Unsupervised objective

* Objective: convergence of unsupervised objective



Training

WebText




OpenAl GPT/
GPT2/ GPT3




Unsupervised pre-training

U= {ul,...,un}
Ll(U) = ZlogP(udui_k, ceeyUj—1;5 @)

T-DMCA: Transformer Decoder with Memory Compressed
Attention



T-DMCA
QK"
Vi

Attention(Q, K, V') = softmaz( 1%

Local attention: 256 tokens

Memory compressed attention: global context capture

Final Architecture : LMLML



Self-attention in T-DMCA
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Unsupervised pre-training

U= {ul,...,un}
Ll(U) = Zlog P(u¢|ui_k, ceo s Uj—1, @)

T-DMCA: Transformer Decoder with Memory Compressed
Attention

ho =UW, + W,
h; = transformer_block(h;_1)Vi € [1,n]

P(u) = softmax(h, W)



Supervised fine-tuning

Classification Start Text Extract :I- Transformer (= Linear
Entailment Start Premise Delim | Hypothesis | Extract |+ Transformer = Linear
Start Text 1 Delim Text 2 Extract | Transformer
Similarity - Linear
Start Text 2 Delim Text 1 Extract | = Transformer
Start Context Delim Answer 1 Extract | Transformer = Linear —
Multiple Choice | Start Context Delim Answer 2 | Extract | = Transformer = Linear —EE
Start Context Delim Answer N | Extract | = Transformer (= Linear




GPT2/ GPT3

» Layer normalization

» Modified initialization: Residual weights initialized by a factor of 1/YN

 Reversible tokenization



GPT3

« Exception: Alternating dense and sparse attention patterns

* Goal: Performance Vs Model size

Model Name Nparams Mlayers Omodel Theads dhead Batch Size Learning Rate
GPT-3 Small 125M 12 768 12 64 0.5M 6.0 x 1074
GPT-3 Medium 350M 24 1024 16 64 0.5M 3.0x 104
GPT-3 Large 760M 24 1536 16 96 0.5M 2.5 x 1074
GPT-3 XL 1.3B 24 2048 24 128 1M 2.0 x 1074
GPT-3 2.7B 2.7B 32 2560 32 80 1M 1.6 x 10~
GPT-3 6.7B 6.7B 32 4096 32 128 2M 1.2 x 104
GPT-3 13B 13.0B 40 5140 40 128 2M 1.0 x 1074

GPT-3 175B or “GPT-3” 175.0B 96 12288 96 128 3.2M 0.6 x 10™*




Training Dataset

* Steps to improve quality of datasets
1. Filtered version of CommonCrawl based on similarity
2. Fuzzy deduplication at document level
3. Added reference corpora.

Quantity Weight in Epochs elapsed when

Dataset (tokens)  training mix training for 300B tokens
Common Crawl (filtered) 410 billion 60% 0.44
WebText2 19 billion 22% 2.9
Booksl1 12 billion 8% 1.9
Books2 55 billion 8% 0.43

Wikipedia 3 billion 3% 3.4




Training Process

* Steps to improve quality of datasets
1. Filtered version of CommonCrawl based on similarity
2. Fuzzy deduplication at document level
3. Added reference corpora.

e Contamination

* Process = Large batch size + small learning rate



Evaluation

* Few-shot learning: evaluation of K examples from evaluation set
* Picking K when separate development and test sets are available.
e Multiple choice task

* Binary classification

* Free form completion



Results

language modeling

guestion answering

translate between languages
Winograd Schema-like tasks
commonsensereasoning
reading comprehension tasks
SuperGLUE benchmark suite

NLI (Natural Language Inference)



Training Curves

6
_10'11
5 .
_10'10
4
9
2 10,
g o)
c ©
.0 8
g O 10" §
) ©
g o
10"
2
-10°
-------- | =2.57.C~0.048
5
15 - - - 10
10° 10" 107 10° 10° 10"

Compute (PetaFLOP/s-days)

Figure 3.1: Smooth scaling of performance with compute. Performance (measured in terms of cross-entropy
validation loss) follows a power-law trend with the amount of compute used for training. The power-law behavior
observed in [KMH " 20] continues for an additional two orders of magnitude with only small deviations from the
predicted curve. For this figure, we exclude embedding parameters from compute and parameter counts.



Language modeling

Setting PTB

SOTA (Zero-Shot) 35.8¢
GPT-3 Zero-Shot 20.5

Table 3.1: Zero-shot results on PTB language modeling dataset. Many other common language modeling datasets
are omitted because they are derived from Wikipedia or other sources which are included in GPT-3’s training data.
[RWCT19]



Language modeling

LAMBADA LAMBADA StoryCloze HellaSwag

Setting (acc) (ppD) (acc) (acc)
SOTA 68.0¢ 8.63° 91.8¢ 85.6¢
GPT-3 Zero-Shot 76.2 3.00 83.2 78.9
GPT-3 One-Shot 72.5 3.35 84.7 78.1
GPT-3 Few-Shot 86.4 1.92 87.7 79.3

Table 3.2: Performance on cloze and completion tasks. GPT-3 significantly improves SOTA on LAMBADA while
achieving respectable performance on two difficult completion prediction datasets. [ Tur20] 2[RWC ™ 19] ¢[LDL19]
d -

[LCH™20]



Language modeling

Accuracy

Figure 3.2: On LAMBADA, the few-shot capability of language models results in a strong boost to accuracy. GPT-3
2.7B outperforms the SOTA 17B parameter Turing-NLG [Tur20] in this setting, and GPT-3 175B advances the state of
the art by 18%. Note zero-shot uses a different format from one-shot and few-shot as described in the text.
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QA

TriviaQA
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Figure 3.3: On TriviaQA GPT3’s performance grows smoothly with model size, suggesting that language models
continue to absorb knowledge as their capacity increases. One-shot and few-shot performance make significant gains
over zero-shot behavior, matching and exceeding the performance of the SOTA fine-tuned open-domain model, RAG

[LPP*20]



Winograd-Style Tasks
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Figure 3.5: Zero-, one-, and few-shot performance on the adversarial Winogrande dataset as model capacity scales.
Scaling is relatively smooth with the gains to few-shot learning increasing with model size, and few-shot GPT-3 175B

is competitive with a fine-tuned ROBERTA-large.



Common Sense Reasoning
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Figure 3.6: GPT-3 results on PIQA in the zero-shot, one-shot, and few-shot settings. The largest model achieves a
score on the development set in all three conditions that exceeds the best recorded score on the task.



Reading Comprehension

CoQA
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Figure 3.7: GPT-3 results on CoQA reading comprehension task. GPT-3 175B achieves 85 F1 in the few-shot setting,
only a few points behind measured human performance and state-of-the-art fine-tuned models. Zero-shot and one-shot
performance is a few points behind, with the gains to few-shot being largest for bigger models.



SuperGLUE

SuperGLUE  BoolQ CB CB COPA RTE
Average Accuracy Accuracy F1  Accuracy Accuracy
Fine-tuned SOTA 89.0 91.0 96.9 93.9 94.8 92.5
Fine-tuned BERT-Large 69.0 77.4 83.6 75.7 70.6 71.7
GPT-3 Few-Shot 71.8 76.4 75.6 52.0 92.0 69.0
WiC WSC MultiRC  MultiRC  ReCoRD ReCoRD
Accuracy Accuracy Accuracy Fla Accuracy Fl1
Fine-tuned SOTA 76.1 93.8 62.3 88.2 92.5 93.3
Fine-tuned BERT-Large 69.6 64.6 24.1 70.0 71.3 72.0
GPT-3 Few-Shot 49.4 80.1 30.5 75.4 90.2 91.1

Table 3.8: Performance of GPT-3 on SuperGLUE compared to fine-tuned baselines and SOTA. All results are reported
on the test set. GPT-3 few-shot is given a total of 32 examples within the context of each task and performs no gradient
updates.



NLI

ANL| Round3
__Fine-tuned SOTA
48
46
__Fine-tuned RoBERTa-Large
44  Fine-tuned BERT-Large
§ 2 Zero-Shot
*8' 40 —e— One-Shot py
3 —e— Few-Shot (K=50) //
<

0.1B 04B 08B 1.3B 26B 6.7B 13B 175B
Parameters in LM (Billions)

Figure 3.9: Performance of GPT-3 on ANLI Round 3. Results are on the dev-set, which has only 1500 examples
and therefore has high variance (we estimate a standard deviation of 1.2%). We find that smaller models hover around
random chance, while few-shot GPT-3 175B closes almost half the gap from random chance to SOTA. Results for

ANLI rounds 1 and 2 are shown in the appendix.



Examples

* https://beta.openai.com/examples/



https://beta.openai.com/examples/

Limitation

* Do notinclude any bidirectional architectures or other training objectives such as
denoising

* Poor sample efficiency during pre-training
* Expensive and inconvenient to perform inference

e Retains the biases of the data it has been trained on



Conclusion

* 175 billion parameter language model
e Strong performance on many NLP tasks

e Zero-shot, one-shot, and few-shot setting
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