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Background

Convolutional Neural Network(ConvNet):

e CNN is a type of deep learning neural network designed to process pixel data and used
in image recognition and processing.
e Firstintroduced in the 1980s by Yann LeCun, a postdoctoral Computer Science

researcher.
e The early version of CNNs, called LeNet (after LeCun), could recognize handwritten

digits.



How do humans interpret image?
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How do we make Computers understand the image?
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Background

In 2012, AlexNet which uses multi-layered neural networks precipitated the “ImageNet moment”

in a new era of computer vision.

e Many ConvNets focused on different aspects of accuracy, efficiency and scalability, and
popularized many useful design principles.

® New ConvNets have several built-in inductive biases that make them well- suited to a wide
variety of CV applications and also efficient when used in a sliding-window
manner(computations are shared).

® This has been the default use of ConvNets, generally on limited object categories such as digits,

faces and pedestrians.



Introduction

e Around the same time, natural language processing (NLP) took a very different path, as
the Transformers replaced Recurrent Neural Networks(RNNs) to become the dominant
backbone architecture.

e The two streams converged in the year 2020, as the introduction of Vision Transformers
(ViT).

One primary focus of ViT is on the scaling behavior.

e With the help of larger model and dataset sizes, Transformers can outperform standard

ResNets by a significant margin.



Introduction

e The biggest challenge is ViT's global attention design, which has a quadratic complexity with
respect to the input size.

e To overcome that, the sliding window strategy was reintroduced to Transformers, allowing them
to behave more similarly to ConvNets.

e Shifted Window Transformer is a milestone work in this direction, demonstrating for the first
time that Transformers can be adopted as a generic vision backbone and achieve state-of-the-
art performance across a range of computer vision tasks beyond image classification.



Motivation

e To bridge the gap between the pre-ViT and post-ViT eras for ConvNets, as well as to test

the limits of what a pure ConvNet can achieve, the authors propose a family of pure
ConvNets dubbed ConvNeXt.

e How to improve ConvNet in modernized way to get closer or exceed Transformer model?



Roadmap to modernize ConvNet

Two models are considered:
= ResNet-50 / Swin-T regime with FLOPs around 4.5 x 1049
= ResNet-200 / Swin-B regime which has FLOPs around 15.0 x 1079

Network Modernization:
1. Applying similar training techniques used to train ViT and obtain much improved results compared to the
original ResNet-50.
Macro design
ResNeXt-ify
Inverted bottleneck
Large Kernel Size
Micro design
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Training Techniques

Training epochs: 300 epochs (from the original 90 epochs for ResNets)
Optimizer: AdamW (Weight Decay)

Data augmentation

Mixup

Cutmix

Rand Augment

e Regularization
Stochastic Depth
Label Smoothing

e This increased the performance of the ResNet-50 model from 76.1% to 78.8%(+2.7%)



Macro Design

Changing Stage compute ratio:

e Swin-T's computation ratio of each stage is 1:1:3:1, and for larger Swin Transformers, the ratio
is 1:1:9:1.

e The number of blocks in each stage from (3, 4, 6, 3) in ResNet-50 is changed to (3, 3, 9, 3).

e This improved the model accuracy from 78.8% to 79.4%.

Changing stem to “Patchify” :

e The stem cell in standard ResNet contains a 7x7 convolution layer with stride 2, followed by a
max pool, which result in a 4x downsampling.

e ConvNeXt replaces the ResNet-style stem cell with a patchify layer implemented using a 4x4,
stride 4 convolution layer.

e The accuracy has changed from 79.4% to 79.5%.



ResNeXt-ify

e In this part, we attempt to adopt the idea of ResNeXt, which has a better FLOPs/accuracy trade-
off than a vanilla ResNet.

e ResNeXt-ify has grouped convolution as the core which is similar to sum operation in self-
attention.

e Following the strategy proposed in ResNeXt, the network width has been increased to the same
number of channels as Swin-T's (from 64 to 96).

e This brings the network performance to 80.5% with increased FLOPs (5.3G).



Inverted bottleneck

e MLP blocks 4 times wider than input
dimension

® Larger kernel size: moving up depthwise
conv layer. MSA is put prior to MLP
layers.
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Figure 3. Block modifications and resulted specifications. (a) is
a ResNeXt block; in (b) we create an inverted bottleneck block and
in (c) the position of the spatial depthwise conv layer is moved up.



Larger kernel sizes

e Although Swin Transformers reintroduced the local window to the self-attention block, the
window size is at least 7x7, significantly larger than the ResNe(X)t kernel size of 3x3.

e The authors experimented with several kernel sizes, including 3, 5, 7, 9, and 11. The
network’s performance increases from 79.9% (3x3) to 80.6% (7x7), while the network’s
FLOPs stay roughly the same.

e A ResNet-200 regime model does not exhibit further gain when increasing the kernel size
beyond 7x7.



Micro Design

GELU replace ReLU: smoother variant

Fewer activation function: consider a block with key/query/value linear embedding layer
Fewer normalization layer
LN substitute BN

Separate downsampling layer: residual block
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Empirical evaluation on ImageNet
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Empirical evaluation on ImageNet

image throughput IN-1K
el size A, KOS (image / s) top-1 acc.
ReaNetY 4G 511 I;;igNet-zlll(l\t;‘[ained‘;n(())éels 56 “0.0 ImageNet-22K pre-trained models
e RegNetY- : : : 2
eRegNetY-8G [51] 2242 39M 80G  591.6  81.7 e R-101x3 [36] 3842 388M 204.6G . 84 .4
e RegNetY-16G [51] 224> 84M 160G 3347 82.9 e R-152x4 [36] 480° 937M 840.5G - 854
°§§fﬂﬁ§:§j {?;} gggj iéﬁ :gg ;jé-jl g;-g ViT-B/16 [18] 3842 87M 555G 93.1 84.0
oEffNet-B5 [67] 4562 30M 999G  169.1  83.6 ViT-L/16 [18] 384% 305M 191.1G  28.5 85.2
e EffNet-B6 [67] 5282 43M 19.0G  96.9 84.0 Swin-B 22427 88M 154G 286.6 8572
e EffNet-B7[67] 6002 66M 37.0G  55.1 84.3 2
ST T M 4460753 =03 oCopVNeXt-B 2242 8OM 154G 292.1 85.8
DeiT-B [68] 2242 87M  17.6G  302.1 81.8 Swin-B 384 88M 47.0G 85.1 86.4
Swin-T 224> 28M 45G 7579 81.3 e ConvNeXt-B 3842 89M  45.1G 95.7 86.8
e ConvNeXt-T 2242 29M  4.5G 7747 82.1 : 2
Swin.S 2242 SOM 879G 4367 S Swin-L 2242 197M 345G  145.0 86.3
o ConvNeXt-S 2242 50M  87G  447.1 83.1 e ConvNeXt-L 224 198M 344G  146.8 86.6
Swin-B 2247 88M 154G 2866 835 Swin-L 384 197M 103.9G  46.0 87.3
T oy e ConvNeXt-L 3842 198M 101.0G  50.4 87.5
o ConvNeXt-B 384°  89M 450G 957 85.1 e ConvNeXt-XL 2242 350M 60.9G 89.3 87.0
CCoNNRGL 224 BRI SRAG las G0 o ConvNeXt-XL 3847 350M 179.0G  30.2 87.8

e ConvNeXt-L 3842 198M 101.0G  50.4 85.5




Empirical Evaluation on COCO: object detection and
segmentation . . ETTLR LL w

e ConvNeXt-T 262G 256 46.2 679 50.8 41.7 65 0 44.9
Cascade Mask-RCNN 3 < schedule

@ ResNet-50 739G 114 463 643 505 40.1 61.7 43.4
e X101-32 819G 9.2 48.1 665 524 41.6 63.9 45.2
e X101-64 972G 7.1 483 664 523 41.7 64.0 45.1
Swin-T 745G 122 504 69.2 547 437 66.6 473
e ConvNeXt-T 741G 135 50.4 69.1 54.8 43.7 66.5 47.3
Swin-S 838G 114 519 70.7 563 45.0 68.2 48.8
e ConvNeXt-S 827G 12.0 519 70.8 565 45.0 68.4 49.1
Swin-B 982G 10.7 519 705 564 450 68.1 48.9
e ConvNeXt-B 964G 114 527 71.3 57.2 45.6 68.9 49.5
Swin-B* 982G 10.7 53.0 71.8 57.5 458 69.4 49.7
e ConvNeXt-B¥ 964G 11.5 54.0 73.1 58.8 46.9 70.6 Sil3
Swin-L# 1382G 9.2 539 724 588 46.7 70.1 50.8

e ConvNeXt-L¥ 1354G 10.0 54.8 73.8 59.8 47.6 7.3 51.7
e ConvNeXt-XL+ 1898G 8.6 55.2 742 599 47.7 71.6 2

Table 3. COCO object detection and segmentation results using
Mask-RCNN and Cascade Mask-RCNN. ¥ indicates that the model
is pre-trained bn ImageNet-22K. ImageNet-1K pre-trained Swin
results are from their Github repository [3]. AP numbers of the
ResNet-50 and X101 models are from [42]. We measure FPS on
an A100 GPU. FLOPs are calculated with image size (1280, 800).



Empirical Evaluation on ADE20K: Semantic

- backbone input crop. mloU #param. FLOPs
seg m e n tat I o n ImageNet-1K pre-trained
Swin-T S0 458 60M 945G
e ConvNeXt-T SH02 46.7 60M 939G
Swin-S 512* 495  8IM  1038G
e ConvNeXt-S 52 49.6 8M 1027G
Swin-B 512" 497 121IM  1188G
e ConvNeXt-B 522 499 122M  1170G
ImageNet-22K pre-trained
Swin-B* 64072 51.7 121IM 1841G
e ConvNeXt-B* 6402 53.1 122M  1828G
Swin-L* 6402 53.5 234M  2468G
e ConvNeXt-L* 64072 53.7 235M 2458G
e ConvNeXt-XL* 6402 54.0 391M 3335G

Table 4. ADE20K validation results using UperNet [80]. * in-
dicates IN-22K pre-training. Swins’ results are from its GitHub
repository [2]. Following Swin, we report mloU results with multi-
scale testing. FLOPs are based on input sizes of (2048, 512) and
(2560, 640) for IN-1K and IN-22K pre-trained models, respectively.



Conclusion

e Inthe 2020s, vision Transformers, particularly hierarchical ones such as Swin
Transformers, began to overtake ConvNets as the favored choice for generic vision
backbones.

e The widely held belief is that vision Transformers are more accurate, efficient, and
scalable than ConvNets.

e ConvNeXts, a pure ConvNet model can compete favorably with state-of- the-art
hierarchical vision Transformers across multiple computer vision benchmarks, while
retaining the simplicity and efficiency of standard ConvNets.



Future work

e The authors hope that the new results reported in this study will challenge several widely
held views and prompt people to rethink the importance of convolution in computer vision.



Thank you!!!!



