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Introduction

Authors of the paper :

Gowthami Somepalli, Liam Fowl, Arpit Bansal, Ping Yeh-Chiang, Yehuda
Dar, Richard Baraniuk, Micah Goldblum, Tom Goldstein

In this paper the authors discussed the methods for visualizing neural
network decision boundaries and decision regions.

These visualizations were then used to investigate issues related to
reproducibility and generalization in neural network training.



What is decision region?

DenseNet, trained for 200
epochs with SGD

Airplane A Frog # Bird




Background

e Most of the current theories on training neural networks concentrate on
understanding the geometry of loss landscapes.

e Meanwhile, considerably less is known about the geometry of class
boundaries.

e The geometry of these regions depends strongly on the inductive bias of
neural network models, which we do not currently have tools to
rigorously analyze.

e The inductive bias of neural networks is impacted by the choice of
architecture, which further complicates theoretical analysis



Questions that motivated this work

e Do neural networks learn the same model twice?

e Do different neural architectures have measurable differences in
inductive bias?

e How are decision regions changing in double descent phenomenon in
NNs?



Method

e In this work they used empirical tools to study
o the geometry of class regions, and
o how neural architecture impacts inductive bias.

e They do this using visualizations and quantitative metrics calculated using
realistic models.



Plotting Decision Boundaries

The main goal while plotting the decision boundaries was to find a
general-purpose visualization method that is simple, controllable, and

captures important parts of decision space that lie near the data
manifold.



Plotting Decision Boundaries

e On-manifold vs off-manifold behavior

Fully Connected Vision Wide
Network Transformer ResNet

trial #1

trial #2

Ground truth: Airplane A Frog # Bird
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Figure 1. The class boundaries of three architectures, plotted on
the plane spanning three randomly selected images. Each model is
trained twice with random seeds. Decision boundaries are repro-
ducible across runs, and there are consistent differences between
the class regions created by different architectures.
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Figure 2. Off-manifold decision boundaries near “random” images
created by shuffling pixels in CIFAR-10 images. Each column’s
title shows the labels of the unshuffled base images. Below each
column we show the shuffled image triplet. Color-class mapping
is as follow Red:Frog, Green:Bird, Orange: Automobile.

ViT

ResNet-18  DenseNet




Plotting Decision Boundaries

e Capturing on-manifold behavior

o The structure of image distributions is highly complex and difficult to
model.

o Observation: in addition to possessing structure near the data

manifold, decision boundaries are also structured in the convex hull
between pairs of data points

(Ref: mixup: Beyond Empirical Risk Minimization)



Plotting Decision Boundaries

e Capturing on-manifold behavior

o They plotted decision boundaries along the convex hull between data
samples.
o The inputs were sampled to the network with coordinates:

(111,1132,.’1:3) il D3
Ui = Zg — 1, U2 = T3 — T1
a - max(vy - U1, [proj; vz - vi|)vi + B(v2 — proj,; v2)

—01<a,B<11



Experimental Setup

Architectures used:

e Selected networks

o asimple Fully Connected Network with 5 hidden layers and ReLU non-
linearities
DenseNet-121
ResNet-18
WideResNet-28x10
WideResNet-28x20
WideResNet-28x30
ViT
MLPMixer
VGG-19
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Experimental Setup

Architectures used:

100 epochs using SGD optimizer

3 multi-step learning rate drops

Random Crop and Horizontal Flip data augmentations

Selected learning rates using a grid search across { 0.001, 0.002, 0.005,
0.01, 0.02, 0.05} for each architecture and optimizer (Adam and SGD)
combination, and training for 200 epochs.

e Mean test accuracy over 3 runs per model



Model Reproducibility and Inductive Bias

Networks have a strong tendency to converge on decision boundaries that
generalize well.

Here they displayed the inductive bias phenomenon using decision boundary
visualizations and discussed:

e Inductive bias depends on model class

e Quantitative analysis of decision regions

o Reproducibility Score
o Measuring architecture-dependent bias

e Does distillation preserve decision boundaries?
e The effect of the optimizer



Model Reproducibility and Inductive Bias

e Inductive bias depends on model class
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Ground truth: Airplane A Frog ® Bird
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Figure 3. Decision regions through a triplet of images, for various architectures (columns) and initialization seeds (rows).




Model Reproducibility and Inductive Bias

e Quantitative analysis of decision regions

Reproducibility is high within a model class, while differences in inductive
bias result in low similarities across model families.

o Reproducibility Score

R(61,02) = Ex,p | (|f(Si,61) N f(Si,62)]) /|5|
T; Randomly chosen triplet

fo,, fo, Same architecture, trained differently

S;  Decision region spanned by 7

ResNet-18, decision regions from 2 trials




Model Reproducibility and Inductive Bias

e Quantitative analysis of decision regions

Reproducibility is high within a model class, while differences in inductive
bias result in low similarities across model families.
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Figure 4. Reproducibility across several popular architectures.



Model Reproducibility and Inductive Bias
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Figure 4. Reproducibility across several popular architectures.




Model Reproducibility and Inductive Bias
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Figure 4. Reproducibility across several popular architectures.




Model Reproducibility and Inductive Bias

WideRN30 0.87 085 085 082 ¢
WideRN20 085 086 085

WideRN10 = 0.85

D
K

ResNet18 ‘ 0.82
DenseNet mmnm 082
ed o7 -
ViT
MLPMixer
FullyCon
SRS PSS S
$\“ $\b“ $\b“ & Qo § S

© © © © o ©
>3 f=)) -~ -] >0 oo
=] I w =1 w

Reproducibility score

S
wn
o

Figure 4. Reproducibility across several popular architectures.




Model Reproducibility and Inductive Bias

e Does distillation preserve decision boundaries?

Distilled students
exhibit noticeably
higher similarity to their
teachers compared with
their vanilla trained
counterparts.
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Figure 5. Differences in reproducibility comparing distilled model
to vanilla trained model. *The reproducibility score is not appli-
cable for this diagonal entry because we start from the same pre-
trained model.




Model Reproducibility and Inductive Bias

Reproducibility
Adam SGD  SGD + SAM
ResNet-18  79.81% 83.74% 87.22%
VGG 81.19% 80.92% 84.21%

e The effect of the optimizer MLPMixer 67.80% 66.51% 68.06%
VIT 69.55% 75.13% 75.19%

Test Accuracy
Adam SGD  SGD + SAM

ResNet-18  93.04 95.30 95.68
VGG 92.87 9313 93.90
MLPMixer  82.22 82.04 82.18
VIT 70.89 75.49 74.72

Table 1. Reproducibility of different models when using different
optimizers. SGD produces more reproducible decision boundaries
relative to Adam, and SGD+SAM almost always consistently in-
crease reproducibility of the model relative to SGD.



DOUBLE DESCENT
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Experimental Setup

‘ResNet18s by scaling the width (number of filters) of convolutional layers.
-used layer widths [k, 2k, 4k, 8k] for varying k.
*The standard ResNet18 corresponds to k = 64

*Trained with cross-entropy loss, and the optimizer Adam with learning-rate
0.0001 for 4000 epochs

‘Label noise(20%)



How do decision boundaries change as we cross the
interpolation threshold?
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Ground truth: @ Truck A Ship # Frog

(a) All the points in the triple are from different classes, and are correctly labeled in the train set (even in the label noise case).
k=10 k=20

no label noise

Model trained w.  Model trained w.

20% label noise

Ground truth: @ Automobile A Automobile @ Automobile

(b) All points in the triple are from the same class, Automobile, and are correctly labeled in the train set (even in the label noise case).



k=10 for all the plots
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Decision boundaries around mislabeled images

# Bird ® Horse # Ship

Ground truth: @ Automobile /A Automobile # Automobile




Quantifying fragmentation

~corresponding to a single predicted class label for the model with parameters
0.,

‘The fragmentation score F(B, Ti) of model 6 within the decision region defined
by Tiis the number of path-connected regions.

*The overall fragmentation score for a model is F(8) = F(B, Ti).



Fragmentation scores as a function of model width
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Quantifying class region stability
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Why does label noise amplify double descent?
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Conclusion

e The authors use a decision boundary perspective to examine the
relationship between model complexity, generalization error, and
reproducibility.

e Overall, the paper provides insights into the behavior of neural networks
at different levels of model complexity

e highlights the importance of considering the decision boundary

perspective in understanding the generalization properties of neural
networks.
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