Denoising Diffusion Probabilistic Models

Jonathan Ho, Ajay Jain, and Pieter Abbeel

Presented by: Xuansheng Wu & Daniel Redder

Contents

Background : Unconditional Image Synthesis

Modeling P(X), an image distribution X

CIFAR 10

Generator

- Variable Auto Encoders
- Generative Adversarial Networks
- Normalizing Flows

Generated Samples

Background : Diffusion Process and Time Reversal

Diffusion destroys structures, and reverts things to a "stable state"

Time Flies

Just go back in time

Data Distribution

Uniform Distribution

Ho, Jonathan et. al., DDPM, NIPS 2022.

High Level Diffusion Explained: Markov Chains

• Model physical diffusion as a markov chain

Let the "most stable state" be gaussian noise

- x_0 is the original image
- x_t is the image after t additions of noise
- x_T the image of pure noise ≈ 1000

Forward Diffusion Adds Noise

Backward Diffusion Removes Noise!

First Order Markov Assumption: the current time step is only dependent on the previous

High Level Diffusion Explained: Model Passes

✤ Forward noising pass (training)

- \diamond Training involves predicting $\epsilon \mid x_t, t$ notated $\epsilon_{\theta}(x_t, t)$
- x_t is created by manual noise application

Slows Inference

 \Leftrightarrow Backward denoising pass (From T \rightarrow 0)

 $p_{\theta}(x_{t-1}|x_t) = \mathsf{N} (X_{t-1}; \mu_{\theta}(x_t, t), \sum_{\theta} (x_t, t))$

• Formerly predicted

Ho, Jonathan et. al., DDPM, NIPS 2022.

- Replaced by a constant in DbG & DPM (below)
- Separately trainable (importance decreases with T)

6

O. Avrahami, D. Lischinski, and O. Fried, "Blended diffusion for text-driven editing of natural images," 2021.

J. Ho, C. Saharia, W. Chan, D. J. Fleet, M. Norouzi, and T. Salimans, "Cascaded diffusion models for high fidelity image generation," 2021.

Diffusion Forward Pass

 Given a data point x₀ at the time step t = 0, the diffusion process at each step t can be formalized as:

$$q(x_t|x_{t-1}) = \mathcal{N}(\sqrt{1-eta_t}x_{t-1},eta_t\mathbf{I}),$$

where $\{\beta_t\}_{t=1}^T$ is the variance of each step.

• Reparameterization Trick: Let $\alpha_t = 1 - \beta_t$ and $\bar{\alpha}_t = \prod_{i=1}^t \alpha_i$, we have:

$$\begin{split} \mathbf{x}_t &= \sqrt{\alpha_t} \mathbf{x}_{t-1} + \sqrt{1 - \alpha_t} \epsilon_{t-1} \\ &= \sqrt{\alpha_t} (\sqrt{\alpha_{t-1}} \mathbf{x}_{t-2} + \sqrt{1 - \alpha_{t-1}} \epsilon_{t-2}) + \sqrt{1 - \alpha_t} \epsilon_{t-1} \\ &= \sqrt{\alpha_t} \alpha_{t-1} \mathbf{x}_{t-2} + \sqrt{\sqrt{\alpha_t - \alpha_t} \alpha_{t-1}^2} + \sqrt{1 - \alpha_t^2} \bar{\epsilon}_{t-2} \\ &= \sqrt{\alpha_t} \alpha_{t-1} \mathbf{x}_{t-2} + \sqrt{1 - \alpha_t} \alpha_{t-1} \bar{\epsilon}_{t-2} \\ &= \dots \\ &= \sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon \text{ ; where } \epsilon_{t-1}, \epsilon_{t-2}, \dots \sim \mathcal{N}(\mathbf{0}, \mathbf{I}) \end{split}$$

• Consider the entire diffusion process as a Markov Chain, we have:

$$q(x_{1:T}|x_0) = \prod_{t=1}^T q(x_t|x_{t-1}).$$

Diffusion Backward Pass

• By conditioning on \mathbf{x}_0 , the real distribution $q(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{x}_0)$ can be written as:

 $q(x_{t-1}|x_t,x_0) = \mathcal{N}(ilde{\mu}(x_t,x_0), ilde{eta}_t\mathbf{I}).$

• Using Bayes' rule, we have:

$$\begin{split} q(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0}) &= q(\mathbf{x}_{t}|\mathbf{x}_{t-1},\mathbf{x}_{0}) \frac{q(\mathbf{x}_{t-1}|\mathbf{x}_{0})}{|q(\mathbf{x}_{t}|\mathbf{x}_{0})|} \\ &\propto \exp\left(-\frac{1}{2} \left(\frac{(\mathbf{x}_{t}-\sqrt{\alpha_{t}}\mathbf{x}_{t-1})^{2}}{\beta_{t}} + \frac{(\mathbf{x}_{t-1}-\sqrt{\bar{\alpha}_{t-1}}\mathbf{x}_{0})^{2}}{1-\bar{\alpha}_{t-1}} - \frac{(\mathbf{x}_{t}-\sqrt{\bar{\alpha}_{t}}\mathbf{x}_{0})^{2}}{1-\bar{\alpha}_{t}}\right)\right) \\ &= \exp\left(-\frac{1}{2} \left(\frac{\mathbf{x}_{t}^{2}-2\sqrt{\alpha_{t}}\mathbf{x}_{t}\mathbf{x}_{t-1}+\alpha_{t}\mathbf{x}_{t-1}^{2}}{\beta_{t}} + \frac{\mathbf{x}_{t-1}^{2}-2\sqrt{\bar{\alpha}_{t-1}}\mathbf{x}_{0}\mathbf{x}_{t-1}+\bar{\alpha}_{t-1}\mathbf{x}_{0}^{2}}{1-\bar{\alpha}_{t-1}} - \frac{(\mathbf{x}_{t}-\sqrt{\bar{\alpha}_{t}}\mathbf{x}_{0})^{2}}{1-\bar{\alpha}_{t}}\right)\right) \\ &= \exp\left(-\frac{1}{2} \left((\frac{\alpha_{t}}{\beta_{t}} + \frac{1}{1-\bar{\alpha}_{t-1}})\mathbf{x}_{t-1}^{2} - (\frac{2\sqrt{\alpha_{t}}}{\beta_{t}}\mathbf{x}_{t} + \frac{2\sqrt{\bar{\alpha}_{t-1}}}{1-\bar{\alpha}_{t-1}}\mathbf{x}_{0})\mathbf{x}_{t-1} + \frac{C(\mathbf{x}_{t},\mathbf{x}_{0})]\right) \end{split}$$

where $C(\mathbf{x}_t, \mathbf{x}_0)$ is some function not involving \mathbf{x}_{t-1}

• Following the standard Gaussian density function, we have:

$$\begin{split} \tilde{\beta}_t &= 1/(\frac{\alpha_t}{\beta_t} + \frac{1}{1 - \bar{\alpha}_{t-1}}) = 1/(\frac{\alpha_t - \bar{\alpha}_t + \beta_t}{\beta_t (1 - \bar{\alpha}_{t-1})}) = \frac{1 - \bar{\alpha}_{t-1}}{1 - \bar{\alpha}_t} \cdot \beta_t \\ \tilde{\mu}_t(\mathbf{x}_t, \mathbf{x}_0) &= (\frac{\sqrt{\alpha_t}}{\beta_t} \mathbf{x}_t + \frac{\sqrt{\bar{\alpha}_{t-1}}}{1 - \bar{\alpha}_{t-1}} \mathbf{x}_0) / (\frac{\alpha_t}{\beta_t} + \frac{1}{1 - \bar{\alpha}_{t-1}}) \\ &= (\frac{\sqrt{\alpha_t}}{\beta_t} \mathbf{x}_t + \frac{\sqrt{\bar{\alpha}_{t-1}}}{1 - \bar{\alpha}_{t-1}} \mathbf{x}_0) \frac{1 - \bar{\alpha}_{t-1}}{1 - \bar{\alpha}_t} \cdot \beta_t \\ &= \frac{\sqrt{\alpha_t} (1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_t} \mathbf{x}_t + \frac{\sqrt{\bar{\alpha}_{t-1}} \beta_t}{1 - \bar{\alpha}_t} \mathbf{x}_0 = \frac{1}{\sqrt{\alpha_t}} \cdot (\mathbf{x}_t - \frac{1 - \alpha_t}{\sqrt{1 - \alpha_t}} * \epsilon_t) \end{split}$$

Ho, Jonathan et. al., DDPM, NIPS 2022.

The Diffusion Algorithm & Structure

Algorithm 1 Training	Algorithm 2 Sampling
1: repeat 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ 3: $t \sim \text{Uniform}(\{1, \dots, T\})$ 4: $\boldsymbol{\epsilon} \sim \mathcal{N}(0, \mathbf{I})$ 5: Take gradient descent step on $\nabla_{\theta} \ \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta}(\sqrt{\bar{\alpha}_t}\mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t}\boldsymbol{\epsilon}, t) \ ^2$ 6: until converged	1: $\mathbf{x}_T \sim \mathcal{N}(0, \mathbf{I})$ 2: for $t = T,, 1$ do 3: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ if $t > 1$, else $\mathbf{z} = 0$ 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1-\alpha_t}{\sqrt{1-\overline{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$ 5: end for 6: return \mathbf{x}_0

Metrics: Cifar-10

Figure 10: Unconditional CIFAR10 progressive sampling quality over time

Progressive Image Generation (conditional)

Table 1: CIFAR10 results. NLL measured in bits/dim.					
Model	IS	FID	NLL Test (Train)		
Conditional					
EBM [11]	8.30	37.9			
JEM [17]	8.76	38.4			
BigGAN [3]	9.22	14.73			
StyleGAN2 + ADA (v1) [29]	10.06	2.67			
Unconditional					
Diffusion (original) [53]			≤ 5.40		
Gated PixelCNN [59]	4.60	65.93	3.03(2.90)		
Sparse Transformer [7]			2.80		
PixelIQN [43]	5.29	49.46			
EBM [11]	6.78	38.2			
NCSNv2 [56]		31.75			
NCSN [55]	$8.87 {\pm} 0.12$	25.32			
SNGAN [39]	8.22 ± 0.05	21.7			
SNGAN-DDLS [4]	9.09 ± 0.10	15.42			
StyleGAN2 + ADA (v1) [29]	9.74 ± 0.05	3.26			
Ours (L_{simple})	9.46 ± 0.11	3.17	$\leq 3.75 \ (3.72)$		

Metrics: LSUN

LSUN: dataset of classes of room images

Table 3: FID scores for LSUN 256×256 datasets					
Model	LSUN Bedroom	LSUN Church	LSUN Cat		
ProgressiveGAN [27] StyleGAN [28] StyleGAN2 [30]	8.34 2.65	6.42 4.21* 3.86	37.52 8.53* 6.93		
$\begin{array}{c} \textbf{Ours} \left(L_{\text{simple}} \right) \\ \textbf{Ours} \left(L_{\text{simple}}, \text{large} \right) \end{array}$	6.36 4.90	7.89 -	19.75		

Unconditioned Image Generation

Ho, Jonathan et. al., DDPM, NIPS 2022.

Figure 17: LSUN Bedroom generated samples, large model. FID=4.90

"Metric": Latent Mixing

What if we mix our inputted images?

- Right source is mixed at a ratio of λ
- Rec. is unclear (they do not define it)
- They do not add noise to these images. It is unclear if they used the CelebA model here

Figure 9: Coarse-to-fine interpolations that vary the number of diffusion steps prior to latent mixing.

Source Rec. λ =0.1 λ =0.2 λ =0.3 λ =0.4 λ =0.5 λ =0.6 λ =0.7 λ =0.8 λ =0.9 Rec. Source

Some Extensions

O. Avrahami, D. Lischinski, and O. Fried, "Blended diffusion for text-driven editing of natural images," 2021.

J. Ho, C. Saharia, W. Chan, D. J. Fleet, M. Norouzi, and T. Salimans, "Cascaded diffusion models for high fidelity image generation," 2021.

A. Bansal, E. Borgnia, H.-M. Chu, J. S. Li, H. Kazemi, F. Huang, M. Goldblum, J. Geiping, and T. Goldstein, "Cold diffusion: Inverting arbitrary image transforms without noise," 2022.

E. Aiello, D. Valsesia, and E. Magli, "Fast inference in denoising diffusion models via mmd finetuning," *arXiv preprint arXiv:2301.07969*, 2023.

Cold Diffusion: Non gaussian noise does not affect inference

Blended Diffusion: Text conditioned inpainting

CONfusion: explainable Al through confidence intervals

MMD Finetuning: Fast Diffusion Inference through Approximation

Conclusion