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Modeling P(X), an image distribution X

• Variable Auto Encoders
• Generative Adversarial Networks
• Normalizing Flows
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Data Distribution Uniform Distribution

Time Flies

Diffusion destroys structures, and reverts things 
to a “stable state”

Just go back in time
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Forward Diffusion

Backward Diffusion

• Model physical diffusion as a markov chain

Let the “most stable state” be gaussian noise

• 𝑥! is the original image
• 𝑥" is the image after t additions of noise
• 𝑥# the image of pure noise ≈ 1000

Forward Diffusion Adds Noise

Backward Diffusion Removes Noise!

First Order Markov Assumption: the current time 
step is only dependent on the previous
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• Replaced by a constant in DbG & DPM (below)
• Separately trainable – (importance decreases with T) 

• Calculated with 𝛽" & 𝜖$
• Formerly predicted

Slows Inference



• Given a data point x_ at the time step t=0, the diffusion process at each step t can 
be formalized as: 

where XXX   is the variance of each step.
• Reparameterization Trick: Let xxxxxxxx and       xxx  x, we have:

• Consider the entire diffusion process as a Markov Chain, we have:
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• By conditioning on     , the real distribution                       can be written as:

• Using Bayes’ rule, we have:

where             is some function not involving      
• Following the standard Gaussian density function, we have:
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Progressive Image Generation
(conditional)
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Unconditioned Image Generation

LSUN: dataset of classes of room images
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What if we mix our inputted 
images?

• Right source is mixed at a 
ratio of 𝜆

• Rec. is unclear (they do 
not define it)

• They do not add noise to 
these images. It is unclear if 
they used the CelebA
model here
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