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Introduction

The paper presents a state of the art results for synthesizing novel views of complex scenes by optimizing 

an underlying continuous volumetrics scene function using sparse set of input views



The input of the model would be static scene as a continuous 5D function that outputs the radiance 
emitted in each direction (𝛳,𝜙) at each point (x,y,z) in space, and a density at each point.

This method optimized a deep fully connected neural network without any convolutional layers to 
represent this function by regressing from a single 5D coordinate (x,y,z,𝛳,𝜙) to a single volume density 
and view-dependent RGB colour.



To achieve the above setting:

1. March camera rays through  the scene to generate a sampled set of 3D points

2. Use those points and their corresponding 2D viewing direction as input to the neural network to 

produce an output set of colours and density

3. Use classical volume rendering technique to accumulate those colours and densities into a 2D 

image

Involve gradient descent to optimize the model by minimizing the error between each observed image 

and the corresponding views rendered. (i.e. try to overfit the model)

Such method will encourage the network to predict a coherent model of the scene.



Motivation

To effectively optimize neural radiance fields to render photorealistic novel views of scenes with 

complicated geometry and appearance, and demonstrate results that outperform prior work on neural 

rendering and view synthesis.



Motivation

Sparsely Sampled images of scene New Views of Same Scene NeRF ( Output )

https://docs.google.com/file/d/1YdtQBrvxOHSXLHt_ThMIrAVdTd-hf5Zg/preview


Some More Motivation

NeRF



Advantage of the method

● Can represent complex real-world geometry and appearance and are well suited for 

gradient-based optimization using projected image.

● Overcomes the prohibitive storage costs of discretized voxel grids when modeling complex scene 

at high-resolution.



Related Work

Recent direction in computer vision: Encoding object and scene in weights of an MLP -> 
map from 3D spatial location to representation of the object

Disadvantage: unable to capture complex geometry + low resolution

Neural 3D representation: Mapping xyz coordinates to signed distance function. Required 
ground truth 3D geometry obtained by ShapeNet.

View synthesis and image-based rendering: take a set of input RGB images and rendering 
into complex shapes and materials.



Scene Representation Networks (SRNs)

● Continuous scene as an opaque(non-transparent) surface,
● Defined by a MLP that maps each (x,y,z) coordinate to a feature vector
● Uses recurrent neural network to predict the scenes of the object other than representation scene.
● Limitation: discrete voxel grids do not scale well and lose fine detail at high resolutions
● Limitation: requires a bounded volume and knowledge of the background

https://www.vincentsitzmann.com/srns/

https://www.vincentsitzmann.com/srns/


Local Light Field Fusion (LLFF)

● Designed for producing photorealistic novel views for well-sampled forward facing scene. (i.e. 

high-resolution with high amount of sample)

● Uses 3D convolutional network to predict RGB grid for each view, then render them into novel 

view

● Limited to simple shapes with low geometric complexity

https://bmild.github.io/llff/

https://bmild.github.io/llff/


Neural Volumes

● Synthesizes novel views of object that lie entirely within a bounded volume in front of a distinct 

background.

● Optimises a deep 3D convolutional network to predict discretized RGB voxel grid with fixed 

samples in  the bounded  volume.

● Fast to train (<10 minutes) at the cost of large storage requirements (~GB for each scene)



Some footage of the results

https://www.matthewtancik.com/nerf

https://www.matthewtancik.com/nerf
http://www.youtube.com/watch?v=JuH79E8rdKc&t=65


Memorizing 2D Image

( x, y ) ( r, g, b )

F𝚯

CPPN : Compositional pattern-producing networks



Memorizing 2D Image

https://docs.google.com/file/d/1WZ4esk_j1L4ZDOQ6uImNrW8TOeBXBPYe/preview


NeRF (Neural Radiance Fields)
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Problem Setup

● What we have?

Given a dataset containing 

RGB images of a static scene, 

their corresponding camera 

poses, and intrinsic 

parameters.

● Set of Camera Poses,

{ (xc, yc, zc), (𝜃c, 𝜙c ) }n = { Xc, dc }n



Problem Setup

● Imagine a plane in 

place of camera, this 

plane is where all the 

3D information from 

the rays will be 

aggregated to 

render a 2D image 

(3D to 2D 

projection).

● Size of this plane is 

same size of input 

image



Volume Rendering with 
Radiance Field

Ground Truth 
Image taken by 
this Camera



Volume Rendering with 
Radiance Field

Every ray is described by two vectors
- Vector that specifies the origin of ray (o).
- A normalized vector that specifies the 

direction of the ray (d).

- we make the t parameter larger (thus 

extending our rays) until a ray reaches 

some interesting location in the object 

space.

( x,  y,  z,  𝜃,  𝜙 )



Volume Rendering with 
Radiance Field
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Volume Rendering with Radiance Field



NeRF



Example of Density profile of a Ray



Volume Rendering with Radiance Field

- Rendering a view from this continuous neural radiance field requires estimating this integral C(r)

How much 
light has been 
blocked up to 
point t?

Density at that point 

Color at r(t) from viewing angle d



Volume Rendering with Radiance Field

- Numerically estimate this continuous integral using quadrature. Which makes it differentiable.

- To do that, partition [t
n
; t

f
 ] into N evenly-spaced bins and then draw one sample uniformly at 

random from within each bin.



Volume Rendering with Radiance Field

- Estimate C(r) with the quadrature rule

How much light has been blocked up to point t?

How much light is contributed  by ray segment i?

Distance between adjacent samples. ( t
i+1

 - t
i
 )



Overview of NeRF scene representation



Optimizing a Neural Radiance Field

- Positional Encoding

- Hierarchical volume sampling



Positional Encoding

- Why Positional Encoding ?

Without Using 
Fourier Feature

Using Fourier 
Feature



Positional Encoding

Without Positional Encoding
( Naive NeRF )

With Positional Encoding
( NeRF )



Positional Encoding
The authors claim that mapping the inputs to a higher dimensional space using high-frequency functions 
before passing them to the network enables better fitting of data that contains high-frequency 
variation



Positional Encoding

- The authors claim that mapping the inputs to a higher dimensional space using high-frequency functions 
before passing them to the network enables better fitting of data that contains high-frequency variation

- This function  𝛾(ᐧ) is applied separately to each of the three coordinate values in X and d. 

- In  experiment,  L = 10 for (X) and L = 4 for (d).
- Why is this? (Explored by the authors)

- Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains

https://bmild.github.io//fourfeat/index.html


Hierarchical volume sampling

- If we sample a lot of points that do not belong to the object space we won’t get any useful 

information. 

- Still, if we only sample some high-volume density regions (points around the mode of the volume 

density distribution),  we may miss out on some other interesting areas.

- What Paper does to increase rendering efficiency?



Hierarchical volume sampling

- Instead of just using a single network to 
represent the scene,  ously optimize two 
networks: one “Coarse" and one ”Fine".

- First sample a set of N
c
 locations using 

stratified sampling, and evaluate the 
“coarse" network

- Given the output of this “Coarse" network, 
we then produce a more informed sampling 
of points N

f
  along each ray where samples 

are biased towards the relevant parts of the 
volume.



Loss Function
- At each optimization iteration,

- Randomly sample a batch of camera rays from the set of all pixels in the dataset (Batch size: 4096 rays)

- Follow the hierarchical volume sampling (N
c
 = 64 & N

f
 = 128)

- Use Volume rendering to render the color of each ray from both set of samples.

- Calculate loss between rendered and true pixel colors, 

C(r),  Ĉc(r), and  Ĉf (r) are the ground truth, coarse volume predicted, and Fine volume predicted RGB 
colors for ray r respectively



Network Architecture



Additional Things

- To be multiview consistent paper  restricting the network to predict the volume density 𝛔 as a 

function of only the location X, while allowing the RGB color c to be predicted as a function of both 
location and viewing direction. 



Additional Things



Dataset & Results

- Synthetic rendering of objects
- Deep Voxel Dataset ( Diffuse Synthetic 360° )

- Authors own Dataset ( Realistic Synthetic 360° )

- Real Image of Complex Scenes.



Deep Voxel Dataset (Diffuse Synthetic 360°)

- 4 Objects with simple Geometry.

- Each rendered at 512 x 512 Pixels from viewpoint sampled on the upper hemisphere. (479 as input 

and 1000 for testing)



Realistic Synthetic 360°

- 8 Objects with simple Geometry.

- Each rendered at 800 x 800 Pixels out of 6 from viewpoint sampled on the upper hemisphere and 2 

from  viewpoint sampled on the full hemisphere (100 as input and 200 for testing)



Real Image of Complex Scenes

- Complex real-world scenes captured with roughly forward-facing images

- Consists of 8 scenes captured with 20 to 62 images, and hold out 1/8 of these for the test set.

- All images are 1008 x 756 pixels.



Results

https://docs.google.com/file/d/1u_AAv7F-zCUZ2uYu2biTnb59NUsr_6f2/preview


Results

https://docs.google.com/file/d/17gRk3DzCkZ_NYtfkz1k7BxBk0hCfxPO6/preview
https://docs.google.com/file/d/1NbNm4BizYKdX7QUg02eIYRqegnqvqsr1/preview


Extra Result : 360° Scene Capture with Real Data

https://docs.google.com/file/d/1mE1ul5F8Znig9Fy_QXzbE3_ZbIe2I43u/preview


Comparison of Results

● PSNR : Peak Signal-to-Noise Ratio  (higher is better)
○ used to quantify reconstruction quality for images and video subject to lossy compression

●  SSIM : Structural Similarity Index Measure ( higher is better )
○ used for measuring the similarity between two images

● LPIPS : Learned Perceptual Image Patch Similarity ( lower is better )
○ computes the similarity between the activations of two image patches for some pre-defined 

network



Qualitative Results Comparison : Realistic Synthetic 
360°



Qualitative Results Comparison : Real World Scenes



Ablation Studies

On Realistic Synthetic 360° Dataset



Good Things About NeRF

- NeRF preserves fine details much better than other algorithms 

- NeRF is able to render partially occluded regions 

- The trained MLP has relatively low storage requirements: about 5MB

- The authors show very impressive qualitative results and show state-of-the-art performance with 

quantitative metrics and different scene types.



Limitations

- NeRF only works with static scenes.

- It requires a significant number of images of the same object.

- A trained NeRF model does not generalize to more than one scene. 

- Computationally expensive: 1-2 days to train each individual scene on a modern GPU.

- Inference is slow : each pixel in a synthesized image requires volume rendering

- Camera pose of each image is required.

- I don’t know but : think how well  would it work for Transparent or Semi-Transparent Objects (Like 

Prism).



Future Direction

- How can we improve Improve Speed?

- Can we make make more generalize modal?

- NeRF works well on images of static subjects captured under controlled settings, it is incapable of 

modeling many ubiquitous, real-world phenomena in uncontrolled images, such as variable 

illumination or transient occluders. (How can we do that?)
- NeRF in the Wild: Neural Radiance Fields for Unconstrained Photo Collections

https://nerf-w.github.io/


Future Direction

- Can we change the only lighting condition in the generated output?
- NeRV: Neural Reflectance and Visibility Fields for Relighting and View Synthesis

https://pratulsrinivasan.github.io/nerv/


Future Direction

- One last thing, Using nerf with generative model like Diffusion.
- DreamFusion: Text-to-3D using 2D Diffusion

https://dreamfusion3d.github.io/gallery.html


Summary

- Novel view synthesis generates images of scenes at previously unseen viewpoints. 

- Prior works are limited to simple shapes and do not scale well to high-resolution images. 

- NeRF encodes a static scene within the parameters of a feedforward neural network.  

- The authors show very impressive qualitative results and show state-of-the-art performance with 

quantitative metrics and different scene types.


